giai bpt
\(x+\frac{x}{\sqrt{x^2+1}}>\frac{35}{12}\)
giải các BPT
1. \(\frac{1-\sqrt{1-4x^2}}{x}< 3\)
2.\(\sqrt[3]{2-x}+\sqrt{x-1}>1\)
3.\(x+\frac{x}{\sqrt{x^2-1}}>\frac{35}{12}\)
Giai bpt :
\(\frac{x^2}{\left(1+\sqrt{1+x}\right)^2}>x-1\)
Giải bpt:
\(\sqrt{x-\frac{1}{x}}-\sqrt{1-\frac{1}{x}}>\frac{x-1}{2}\)
Giải bpt
\(\sqrt{x-\frac{1}{x}}-\sqrt{1-\frac{1}{x}}>\frac{x-1}{2}\)
giai bpt: \(3+\frac{x^2-4}{x^2+6}-\frac{5}{x^2+1}
Giai PT hoặc BPT
\(\frac{3x-1}{x-1}-\frac{2x+5}{x+3}+\frac{4}{x^2+2x-3}=1\)
\(\frac{3x-1}{x-1}-\frac{2x+5}{x+3}+\frac{1}{x^2+2x-3}=1.\)
\(ĐK:\hept{\begin{cases}x-1\ne0\\x+3\ne\\x^2+2x-3\ne0\end{cases}0}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne\Leftrightarrow-3\end{cases}}\)
\(\Leftrightarrow\left(3x-1\right)\left(x+3\right)-\left(2x+5\right)\left(x-1\right)+4-x^2-2x+3=0\)
\(\Leftrightarrow3x^2+9x-x-3-2x^2+2x-5x+5+4-x^2-2x+3=0\)
\(\Leftrightarrow3x+9=0\)
\(\Leftrightarrow3x=-9\Leftrightarrow x=-3\) (loại)
Vậy pt vô No
Giải bpt
a) \(\frac{3}{\sqrt{x-2}-1}\ge\frac{5}{\sqrt{x-2}-3}\)
b) \(x\sqrt{x-3}-\frac{\sqrt{x-3}}{2-x}\le0\)
c) \(\frac{2\sqrt{x-1}-4}{\sqrt{4-x^2}-1}\ge2-\sqrt{x-1}\)
a/ ĐKXĐ: \(\left\{{}\begin{matrix}x\ge2\\x\ne\left\{3;11\right\}\end{matrix}\right.\)
Đặt \(\sqrt{x-2}=t\ge0\)
\(\Rightarrow\frac{3}{t-1}\ge\frac{5}{t-3}\)
\(\Leftrightarrow\frac{3}{t-1}-\frac{5}{t-3}\ge0\)
\(\Leftrightarrow\frac{3t-9-5t+5}{\left(t-1\right)\left(t-3\right)}\ge0\)
\(\Leftrightarrow\frac{-2t-4}{\left(t-1\right)\left(t-3\right)}\ge0\)
\(\Leftrightarrow\frac{t+2}{\left(t-1\right)\left(t-3\right)}\le0\)
\(\Leftrightarrow1< t< 3\)
\(\Rightarrow1< \sqrt{x-2}< 3\)
\(\Leftrightarrow1< x-2< 9\Rightarrow3< x< 11\)
b/
ĐKXĐ: \(x\ge3\)
- Với \(x=3\) BPT thỏa mãn
- Với \(x>3\Rightarrow\sqrt{x-3}>0\) BPT tương đương
\(x-\frac{1}{2-x}\le0\Leftrightarrow x+\frac{1}{x-2}\le0\)
\(\Leftrightarrow\frac{x^2-2x+1}{x-2}\le0\)
\(\Leftrightarrow\frac{\left(x-1\right)^2}{x-2}\le0\Rightarrow\) không tồn tại x thỏa mãn
Vậy BPT có nghiệm duy nhất \(x=3\)
c/
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge1\\4-x^2\ge0\\\sqrt{4-x^2}\ne1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\-2\le x\le2\\x\ne\pm\sqrt{3}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}1\le x\le2\\x\ne\sqrt{3}\end{matrix}\right.\)
BPT tương đương:
\(\frac{2\left(\sqrt{x-1}-2\right)}{\sqrt{4-x^2}-1}+\sqrt{x-1}-2\ge0\)
\(\Leftrightarrow\left(\sqrt{x-1}-2\right)\left(\frac{2}{\sqrt{4-x^2}-1}+1\right)\ge0\)
Do \(x\le2\Rightarrow\sqrt{x-1}\le1\Rightarrow\sqrt{x-1}-2< 0\)
BPt tương đương:
\(\frac{2}{\sqrt{4-x^2}-1}+1\le0\)
\(\Leftrightarrow\frac{1+\sqrt{4-x^2}}{\sqrt{4-x^2}-1}\le0\)
\(\Leftrightarrow\sqrt{4-x^2}-1< 0\) (do \(1+\sqrt{4-x^2}>0\) \(\forall x\))
\(\Leftrightarrow\sqrt{4-x^2}< 1\Leftrightarrow x^2>3\Rightarrow x>\sqrt{3}\)
Vậy nghiệm của BPT đã cho là: \(\sqrt{3}< x\le2\)
giai bpt:
a) \(\frac{x-2}{4}+\frac{3x+4}{3}< 0\)
b) \(\frac{6x+9}{x-4}>0\)
c) \(\frac{2x-3}{2x+3}+\frac{2x+3}{2x-3}< 0\)
d) \(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}\le\frac{x^2}{7}-\frac{2x-3}{5}\)
Giải bpt
\(\frac{2}{x}-\frac{1}{2}>\sqrt{\frac{4}{x^2}-\frac{3}{4}}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ne0\\-\frac{4}{\sqrt{3}}\le x\le\frac{4}{\sqrt{3}}\end{matrix}\right.\)
- Với \(x< 0\Rightarrow\left\{{}\begin{matrix}VT< 0\\VP\ge0\end{matrix}\right.\) BPT vô nghiệm
- Với \(0< x\le\frac{4}{\sqrt{3}}\) hai vế đều dương, bình phương:
\(\frac{4}{x^2}+\frac{1}{4}-\frac{2}{x}>\frac{4}{x^2}-\frac{3}{4}\)
\(\Leftrightarrow\frac{2}{x}< 1\Rightarrow x>2\)
Vậy nghiệm của BPT là \(2< x\le\frac{4}{\sqrt{3}}\)