CMR:
a) \(\frac{a}{b}\) = \(\frac{1}{q+1}\) + \(\frac{a\left(q+1\right)-b}{b\left(q+1\right)}\) với a, b, q thuộc Z ; \(b\ne0\); \(q\ne-1\)
huhu mk cần gấp lắm
Cho a,b,c dương . CMR :
1) \(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}\ge6;x+y+z\ge6\)
2) \(a_1.a_2....a_n\le\frac{1}{\left(n-1\right)^n};\frac{1}{a_1+1}+\frac{1}{a_2+1}+...+\frac{1}{a_n+1}=n-1\)
3) \(\frac{a}{b+c+1}+\frac{b}{a+c+1}+\frac{c}{b+a+1}+\left(1-a\right)\left(1-b\right)\left(1-c\right)\le1\) với a, b, c thuộc \(\left[0;1\right]\)
a, Cho \(a\ne b\). Chứng minh \(\frac{1}{x-a}+\frac{1}{x-b}=\frac{1}{a}+\frac{1}{b}\) với \(x=\frac{2ab}{a+b}\)
b. Cho \(x=\frac{a-b}{a+b};\)\(y=\frac{b-c}{b+c};\)\(z=\frac{c-a}{c+a}.\)Chứng minh : \(\left(1-x\right)\left(1-y\right)\left(1-z\right)=\left(1+x\right)\left(1+y\right)\left(1+z\right)\)
1. \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=1\end{matrix}\right.\). Cmr: \(\frac{ab}{\sqrt{\left(1-c\right)^2\left(1+c\right)}}+\frac{bc}{\sqrt{\left(1-a\right)^2\left(1+a\right)}}+\frac{ca}{\sqrt{\left(1-b\right)^3\left(1+b\right)}}\le\frac{3\sqrt{2}}{8}\)
2. \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c\le1\end{matrix}\right.\). Cmr: \(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab\left(a+b\right)}+\frac{1}{bc\left(b+c\right)}+\frac{1}{ac\left(a+c\right)}\ge\frac{87}{2}\)
3. \(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca=2abc\end{matrix}\right.\). Cmr: \(\frac{1}{a\left(2a-1\right)^2}+\frac{1}{b\left(2b-1\right)^2}+\frac{1}{c\left(2c-1\right)^2}\ge\frac{1}{2}\)
4. \(\left\{{}\begin{matrix}x,y,z>0\\x+y+z=2015\end{matrix}\right.\). Tìm min \(A=\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^2+x^2}\)
Mn giúp mk với ạ! Thanks nhiều
Mới nghĩ ra 3 câu:
a/ \(\frac{ab}{\sqrt{\left(1-c\right)^2\left(1+c\right)}}=\frac{ab}{\sqrt{\left(a+b\right)^2\left(1+c\right)}}\le\frac{ab}{2\sqrt{ab\left(1+c\right)}}=\frac{1}{2}\sqrt{\frac{ab}{1+c}}\)
\(\sum\sqrt{\frac{ab}{1+c}}\le\sqrt{2\sum\frac{ab}{1+c}}\)
\(\sum\frac{ab}{1+c}=\sum\frac{ab}{a+c+b+c}\le\frac{1}{4}\sum\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)=\frac{1}{4}\)
c/ \(ab+bc+ca=2abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
Đặt \(\left(x;y;z\right)=\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\Rightarrow x+y+z=2\)
\(VT=\sum\frac{x^3}{\left(2-x\right)^2}\)
Ta có đánh giá: \(\frac{x^3}{\left(2-x\right)^2}\ge x-\frac{1}{2}\) \(\forall x\in\left(0;2\right)\)
\(\Leftrightarrow2x^3\ge\left(2x-1\right)\left(x^2-4x+4\right)\)
\(\Leftrightarrow9x^2-12x+4\ge0\Leftrightarrow\left(3x-2\right)^2\ge0\)
d/ Ta có đánh giá: \(\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)
Akai Haruma, Nguyễn Ngọc Lộc , @tth_new, @Băng Băng 2k6, @Trần Thanh Phương, @Nguyễn Việt Lâm
Mn giúp e vs ạ! Thanks!
Tính
a) \(\frac{x^2}{\left(x-y\right)\left(x-z\right)}\) +\(\frac{y^2}{\left(y-x\right)\left(y-z\right)}\) +\(\frac{z^2}{\left(z-x\right)\left(x-y\right)}\)
b) \(\frac{1}{\left(a-b\right)\left(b-c\right)}\) + \(\frac{1}{\left(b-c\right)\left(c-a\right)}\) + \(\frac{1}{\left(c-a\right)\left(a-b\right)}\)
c) \(\frac{1}{x^2+x}\) + \(\frac{1}{x^2+3x+2}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}+\frac{1}{x+5}\)
Bài 1: Cho a,b,c đôi một khác nhau. CMR:
\(\frac{\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(x-c\right)\left(x-a\right)}{\left(b-c\right)\left(b-a\right)}+\frac{\left(x-a\right)\left(x-b\right)}{\left(c-a\right)\left(c-b\right)}=1\)=1
Bài 2: CMR: nếu \(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}=1\)và x=y+z thì:
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\)
Cho \(x=\frac{a+b}{a-b}\), \(y=\frac{b+c}{b-c}\), \(z=\frac{c+a}{c-a}\)
CMR : \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=\left(1-x\right)\left(1-y\right)\left(1-z\right)\)
Sửa đề: Chứng minh \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=\left(x-1\right)\left(y-1\right)\left(z-1\right)\)
Ta có: \(x+1=\frac{a+b}{a-b}+1=\frac{2a}{a+b}\) . Tương tự với hai đẳng thức còn lại và nhân theo vế, được:
\(VT=\left(x+1\right)\left(y+1\right)\left(z+1\right)=\frac{8abc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\) (\(a\ne b\ne c\)) (1)
Lại có \(x-1=\frac{a+b}{a-b}-1=\frac{2b}{a-b}\).Tương với hai đẳng thức kia rồi nhân theo vế ta được:
\(VP=\left(x-1\right)\left(y-1\right)\left(z-1\right)=\frac{8abc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\) (2)
Từ (1) và (2) suy ra đpcm.
Sai hay đúng thì tùy:v
Chứng minh giúp mình mấy câu bất đẳng thức này nha
a) \(\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\sqrt[4]{ab}\left(a,b>0\right)\)
b) \(\left(\sqrt{a}+\sqrt{b}\right)^8\ge64ab\left(a+b\right)^2\left(a,b>0\right)\)
c) \(y\left(\frac{1}{x}+\frac{1}{x}\right)+\frac{1}{y}\left(x+z\right)\le\left(\frac{1}{x}+\frac{1}{z}\right)\left(x+z\right)\left(0< x\le y\le z\right)\)
d) \(a+b+c\ge3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a,b,c>0;a+b+c=abc\right)\)
a, Đặt \(\sqrt[4]{a}=x;\sqrt[4]{b}=y.\)Bất đẳng thức ban đầu trở thành: \(\frac{2x^2y^2}{x^2+y^2}\le xy.\)
ta có : \(x^2+y^2\ge2xy\Rightarrow\frac{2x^2y^2}{x^2+y^2}\le\frac{2x^2y^2}{2xy}=xy.\)(đpcm )
dấu " = " xẩy ra khi x = y > 0
vậy bất đăng thức ban đầu đúng. dấu " = " xẩy ra khi a = b >0
Cho a,b,c thuộc Z t/m \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\)C/M:\(\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\)là số chính phương
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{abc}\) ???? cho gia thiet the nay thi ai ma lam duoc
Bài 1: Cho a,b,c đôi một khác nhau. Chứng minh rằng:
\(\frac{\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(x-c\right)\left(x-a\right)}{\left(b-c\right)\left(b-a\right)}+\frac{\left(x-a\right)\left(x-b\right)}{\left(c-a\right)\left(c-b\right)}=1\)
Bài 2: CMR: nếu \(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}=1\) và x=y+z thì:
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\)
Mọi người làm nhanh giúp em với ạ!
2) 1/x - 1/y - 1/z = 1
=> (1/x - 1/y - 1/z)^2 = 1
<=> 1/x^2 + 1/y^2 + 1/z^2 - 2/xy - 2/xz + 2/yz = 1
<=> 1/x^2 + 1/y^2 + 1/z^2 - 2.(1/xy + 1/xz - 1/yz) = 1
<=> 1/x^2 + 1/y^2 + 1/z^2 - 2.(z+y-x/xyz) = 1
<=> 1/x^2 + 1/y^2 + 1/z^2 - 2.0 = 1
<=> 1/x^2 + 1/y^2 + 1/z^2 = 1 (đpcm)
Cho a,b,c thuộc Z t/m \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\)C/M:\(\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\)là số chính phương
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\)
\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{abc}\)
\(\Leftrightarrow ab+bc+ca=1\)
Khi đó ta có : \(1+a^2=ab+bc+ca+a^2\)
\(=b\left(a+c\right)+a\left(a+c\right)=\left(a+c\right)\left(a+b\right)\)
Tương tự ta có : \(\left\{{}\begin{matrix}1+b^2=\left(b+c\right)\left(a+b\right)\\1+c^2=\left(c+a\right)\left(b+c\right)\end{matrix}\right.\)
Nhân theo vế của 3 đẳng thức ta được :
\(\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)=\left(a+b\right)^2\cdot\left(b+c\right)^2\cdot\left(c+a\right)^2\)
\(=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\) là số chính phương
Ta có đpcm