Cho tam giác ABC vuông tại A, đường phân giác góc A cắt BC tại M. Biết MB= 15cm, MC= 20cm, AC= 28cm. Kẻ ME vuông góc với AC. Tính độ dài AE, EC, ME.
Cho tam giác ABC vuông tại A, biết AB = 6 cm, AC = 8 cm. Tia phân giác của góc A cắt BC tại E. a) Tính độ dài các đoạn thẳng BC, BE, EC. b) Kẻ đường trung tuyến AM, M BC . Từ M kẻ đường thẳng vuông góc với AC cắt AC tại N. Tính tỉ số AN AC . c) Kẻ AH BC (H BC) . Từ A kẻ đường thẳng vuông góc với AM cắt BC tại D. Chứng minh rằng AB là tia phân giác của góc DAH
Cho tam giác ABC vuông tại A, biết AB = 6 cm, AC = 8 cm. Tia phân giác của góc A cắt BC tại E. a) Tính độ dài các đoạn thẳng BC, BE, EC. b) Kẻ đường trung tuyến AM, M BC . Từ M kẻ đường thẳng vuông góc với AC cắt AC tại N. Tính tỉ số AN AC .
Cho tam giác ABC có cạnh AB = 12cm, AC = 16cm, BC = 20cm. Kẻ đường cao AM. Kẻ ME vuông góc với AB.
a) Chứng minh tam giác ABC là tam giác vuông.
b) Tính độ dài AM, BM.
c) Chứng minh AE.AB = AC2 – MC2.
d) Chứng minh AE . AB = MB . MC = EM . AC.
a, Vì \(BC^2=400=256+144=AC^2+AB^2\) nên tam giác ABC vuông tại A
b, Áp dụng HTL: \(AM=\dfrac{AB\cdot AC}{BC}=9,6\left(cm\right)\)
\(BM=\dfrac{AB^2}{BC}=7,2 \left(cm\right)\)
c, Áp dụng HTL: \(AE\cdot AB=AM^2\)
Áp dụng PTG: \(AM^2=AC^2-MC^2\)
Vậy \(AE\cdot AB=AC^2-MC^2\)
d, Áp dụng HTL: \(AE\cdot AB=MB\cdot MC=AM^2\)
\(\left\{{}\begin{matrix}\widehat{EAM}=\widehat{ACM}\left(cùng.phụ.\widehat{MAC}\right)\\\widehat{AEM}=\widehat{AMC}=90^0\end{matrix}\right.\Rightarrow\Delta AEM\sim\Delta CMA\left(g.g\right)\\ \Rightarrow EM\cdot AC=AM^2\)
Vậy ta được đpcm
1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cm
a) Chứng tỏ tam giác ABC vuông tại A.
b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.
2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.
a) Chứng tỏ tam giác ABC vuông.
b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.
3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC = 20cm, AH = 12cm, BH = 5cm.
4.Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC
a) Chứng minh tam giác AHB = tam giác AHC
b) Từ H kẻ HM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho BM = CN. Chứng minh HN vuông góc AC.
5.Cho tam giác ABC cân tại A, tia phân giác của góc A cắt BC tại I
a) Chứng minh tam giác AIB = tam giác AIC
b) Lấy M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh AD song song BC và AI vuông góc AD.
c) Vẽ AH vuông góc BD tại H, vẽ CK vuông góc BD tại K. Chứng minh BH = DK.
6.Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD(E thuộc BD). AE cắt BC ở K.
a) Chứng minh tam giác ABE = tam giác KBE và suy ra tam giác BAK cân.
b) Chứng minh tam giác ABD = tam giác KBD và DK vuông góc BC.
c) Kẻ AH vuông góc BC(H thuộc BC). Chứng minh AK là tia phân giác của HAC.
Mọi người vẽ hình lun 6 bài giúp mình nha! Mình đang cần gấp!:(
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
a) Áp dụng định lý Pytago vào \(\Delta\)ABC có
AB2+AC2=BC2
thay AB=3cm, AC=4cm va BC=5cm, ta có:
32+42=52
=> 9+16=25 (luôn đúng)
=> đpcm
b) có D nằm trên tia đối của tia AC
=> D,A,C thằng hàng và A nằm giữa D và C
=> DA+AC=DC
=> DA+4=6
=>DA=2(cm)
áp dụng định lý Pytago vào tam giác ABD vuông tại A có:
AB2+AD2=BD2
=> 32+22=BD2
=> 9+4=BD2
=> \(BD=\sqrt{13}\)(cm)
Cho ∆𝐴𝐵𝐶 vuông tại A có AB = 15cm, AC = 20cm. Tia phân giác của 𝐴𝐵𝐶̂ cắt AC tại D.
a) Tính độ dài BC, AD
b) Từ D kẻ đường vuông góc với BC tại H (𝐻∈𝐵𝐶). Chứng minh: CH.CB = CD.CA
c) Tính diện tích tam giác CHD
Mong những người Ae thiện lành giúp tôi
b) xét tg DHC và tg BAC có A=H =90 độ
C chung
=> tg DHC ~ tg BAC( g.g)
=> \(\dfrac{CH}{AC}=\dfrac{CD}{BC}=>CH.CB=CD.CA\)
c) ta có AC=AD+DC => DC=AC-AD=20-9,4=10,6 cm
tg DHC~ tg BAC => \(\dfrac{SDHC}{SBAC}=\left(\dfrac{DC}{BC}\right)^2=\left(\dfrac{10,6}{25}\right)^2\)
=> SDHC= SBAC.\(\left(\dfrac{10,6}{25}\right)^2\)
Chỗ này bạn thay số và tính nhé
a) Xét ABC cos A=90 độ=> BC2=AC2+AB2( dl Py ta go)
=> BC2= 202+152=625 => BC=25 cm
Xét tg ABC có BD pg B
\(\dfrac{AB}{BC}=\dfrac{AD}{DC}=>\dfrac{AB}{BC+AB}=\dfrac{AD}{AD+DC}< =>\dfrac{15}{15+20}=\dfrac{AD}{BC}< =>\dfrac{15}{35}=\dfrac{AD}{25}=>AD=\dfrac{15.25}{35}~~9,4cm\)
cho tam giác abc cân tại a tia pg am m thuộc bc sao cho mb=mc từ m kẻ md vuông góc với ab me vuông với ac CM tam giác abm = tam giác acm am vuông góc với bc ad =ae góc amd = góc ame
a: Xét ΔABM và ΔACM có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó: ΔABM=ΔACM
b: Ta có: ΔABC cân tại A
mà AM là phân giác
nên AM là đường cao
c: Xét ΔAMD vuông tại D và ΔAME vuông tại E có
AM chung
\(\widehat{MAD}=\widehat{MAE}\)
Do đó: ΔAMD=ΔAME
Suy ra: AD=AE
a) Xét tam giác BHA và tam giác BAC có
góc BHA= góc BAC (=90)
góc B chung
=> tam giác BHA đồng dạng tam giác BAC (g.g)
Cho tam giác ABC có AB=21cm, AC=28cm, BC=35cm. Vẽ đường cao AH.
a/ Chứng minh tam giác ABC vuông. Tính chiều cao AH
b/ Chứng minh tam giác HBA đồng dạng với tam giác HAC
c/ Đường phân giác của góc A cắt BC tại M. Tính độ dài đoạn thẳng MB, MC
a) Ta có: AB^2 + AC^2 = 21^2 + 28^2 = 35^2 = BC^2
Vậy Tam giác ABC vuông tại A (đl Pytago đảo)
b) Ta có: Góc B + góc C = 90 độ (cmt câu a)
Góc HAC + góc C = 90 độ (Tam giác HAC vuông tại H)
=> Góc B = góc HAC
Mà Góc AHB= Góc AHC = 90 độ (Đường cao AH)
Vậy Tam giác HBA ~ tam giác HAC (góc - góc)
c)
Theo tính chất đường phân giác trong tam giác:
MB/ AB = MC / AC
<=> MB. AC = MC . AB
<=> MB . AC = (35- MB) . AB
<=> 35AB= MB.(AB+AC)
<=> MB = 35AB/(AB+AC) = 35.21/(21+28) = 15 cm
=> MC= 35 - 15 = 20 cm
Vậy MB = 15 cm, MC 20 cm
(Bạn tự vẽ hình và ghi giả thuyết kết luận nhé!)
cho tam giác ABC có AB=AC,BM là đường trung tuyến .Trên tia đối của tia MB lấy điểm E sao cho MB=ME
a)c/m tứ giác ABCE lad hình bình hành và góc ACE=góc ACB
b)kẻ AH vuông góc với BC tại H,Dlaf trung điểm của AE .Từ M kẻ MI vuông góc vói CD cắt EC tại K
c)CD cắt BE tại F .C/m AF=2/3 BM
giúp mik nhá