Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thuần Mỹ

 Cho tam giác ABC có cạnh AB = 12cm, AC = 16cm, BC = 20cm. Kẻ đường cao AM. Kẻ ME vuông góc với AB.

a) Chứng minh tam giác ABC là tam giác vuông.

b) Tính độ dài AM, BM.

c) Chứng minh AE.AB = AC2 – MC2.

d) Chứng minh AE . AB = MB . MC = EM . AC.

Nguyễn Hoàng Minh
30 tháng 10 2021 lúc 21:23

a, Vì \(BC^2=400=256+144=AC^2+AB^2\) nên tam giác ABC vuông tại A

b, Áp dụng HTL: \(AM=\dfrac{AB\cdot AC}{BC}=9,6\left(cm\right)\)

\(BM=\dfrac{AB^2}{BC}=7,2 \left(cm\right)\)

c, Áp dụng HTL: \(AE\cdot AB=AM^2\)

Áp dụng PTG: \(AM^2=AC^2-MC^2\)

Vậy \(AE\cdot AB=AC^2-MC^2\)

d, Áp dụng HTL: \(AE\cdot AB=MB\cdot MC=AM^2\)

\(\left\{{}\begin{matrix}\widehat{EAM}=\widehat{ACM}\left(cùng.phụ.\widehat{MAC}\right)\\\widehat{AEM}=\widehat{AMC}=90^0\end{matrix}\right.\Rightarrow\Delta AEM\sim\Delta CMA\left(g.g\right)\\ \Rightarrow EM\cdot AC=AM^2\)

Vậy ta được đpcm

Thuần Mỹ
31 tháng 10 2021 lúc 13:05

 

 


Các câu hỏi tương tự
Hoàn Hà
Xem chi tiết
Ank Dương
Xem chi tiết
Mrbeast6000
Xem chi tiết
Mrbeast6000
Xem chi tiết
Mrbeast6000
Xem chi tiết
ngô trần liên khương
Xem chi tiết
mary
Xem chi tiết
Nguyễn Viễn
Xem chi tiết
Nguyễn Thu Trang
Xem chi tiết