Cho tam giác ABC vuông tại A. Trên đoạn thẳng AB lấy điểm E, trên tia đối của tia CA lấy điểm F sao cho BE=CF. Vẽ hình bình hành BEFD. Gọi I là giao điểm của EF và BC. Qua E kẻ đường vuông góc với AB cắt BI tại K.
a) CMR tứ giác EKFC là hình bình hành
b) Qua I kẻ đường vuông góc với AF cắt BD tại M. CMR AI=BM
c) CMR C đối xứng với D qua MF
d)Tìm vị trí của E trên AB để A,I,D thẳng hàng
Cho tam giác ABC vuông tại A có AB = 9cm, AC = 12cm, đường cao AH,, tia phân giác góc A cắt BC tại D
a) Tính BC, CD, chiều cao AH của tam giác ABC
b) Lấy điểm E sao cho tứ giác ADCE là hình bình hành. Kẻ EM vuông góc với AC ( M thuộc AC ), AN vuông góc với CE ( N thuộc tia CE ) chứng minh tam giác HAC đồng dạng tam giác MEA
Cho hình vuông ABCD. Trên tia đối của tia CD lấy điểm E bất kì sao cho CE<CD. Kẻ BM vuông góc với BE (M ϵ BE), BM cắt BC tại H, AH cắt BD tại I, AC cắt BD tại O. a) Chứng minh rằng EI vuông góc với BD. b) Chứng minh rằng MI là tia phân giác của góc BMD. c) Tìm vị trí điểm E sao cho tam giácc AMD có diện tích lớn nhất.
Cho hình vuông ABCD. Trên tia đối của tia CD lấy điểm E bất kì sao cho CE<CD. Kẻ BM vuông góc với BE (M ϵ BE), BM cắt BC tại H, AH cắt BD tại I, AC cắt BD tại O. a) Chứng minh rằng EI vuông góc với BD. b) Chứng minh rằng MI là tia phân giác của góc BMD. c) Tìm vị trí điểm E sao cho tam giác AMD có diện tích lớn nhất.
Cho tam giác ABC vuông tại A,có AC>AB. M là trung điểm BC trên tia đối của tia MA lấy điểm E sao cho M là trung điểm cua AE.
a. Chứng minh tứ giác ABEC là hình chữ nhật.
b. Lấy điểm F đối xứng với E qua C. Chứng minh rằng tứ giác ABCF là hình bình hành
c. Gọi K là trung điểm cua AF. Chứng minh AMCK là hình thoi.
d. Từ trung điểm D của BE kẻ DI vuông góc với BC tại I, vẽ đường thẳng vuông góc vói EF tại F , đường thẳng này cắt DI tại H. Chứng minh điểm H cách đều B và F
Cho tam giác ABC vuông ở A, đường cao AH. Kẻ HE vuông góc với AB tại E và HF vuông góc với AC tại F.
a) CM tứ giác AFHE là hình chữ nhật
b) Trên tia đối của tia FH lấy điểm M sao cho FH=FM. Trên tia đối của tia EH lấy điểm N sao cho EH=EN. Chứng minh tứ giác AEFM, là hình bình hành.
c) CM A, M, N thẳng hàng.
d) Kẻ trung tuyến AI của tam giác ABC. CM AI vuông góc MN.
Mọi người giúp mình với, mình đang cần gấp
1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D;
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE.
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng
5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF
Cho tam giác ABC nhọn (ab<ac). Kẻ đường cao AH. Gọi M là trung điểm của AB, N là điểm đối xứng với H qua M.
a. C/m : Tứ giác ANBH là hình chữ nhật.
b. Trên tia đối của tia HB lấy điểm E sao cho H là trung điểm của BE. Gọi F là điểm đối xứng với A qua H. C/m: ABEF là hình thoi.
c. Gọi I là giao điểm của AB và NE. C/m: MI song song BC.
d. Đường thẳng MI cắt AC tại K. Kẻ NQ vuông góc với KH tại Q. Chứng minh AQ vuông góc BQ.
Cho tam giác ABC vuông cân tại A. Trên đoạn thẳng AB lấy điểm E, trên
tia đối của tia CA lấy điểm F sao cho BE = CF . Vẽ hình bình hành BEFD. Gọi I là giao điểm
của EF và BC. Qua E kẻ đường thẳng vuông góc với AB cắt BI tại K.
a) Chứng minh rằng : Tứ giác EKFC là hình bình hành
b) Qua I kẻ đường thẳng vuông góc với AF cắt BD tại M. CMR : AI = BM
c) CMR : C đối xứng với D qua MF
d) Tìm vị trí của E trên AB để A, I, D thẳng hàng.