Giải phương trình
\(32x^2+12x+11-24x\sqrt{2x+3}=0\)
Giải phương trình
\(32x^2+12x+11-24x\sqrt{2x+3}=0\)
ĐKXĐ: \(x\ge\dfrac{-3}{2}\)
\(36x^2-2.6x\sqrt{8x+12}+8x+12-4x^2+4x-1=0\)
\(\Leftrightarrow\left(6x-\sqrt{8x+12}\right)^2-\left(2x-1\right)^2=0\)
\(\Leftrightarrow\left(4x-\sqrt{8x+12}+1\right)\left(8x-\sqrt{8x+12}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-\sqrt{8x+12}+1=0\left(1\right)\\8x-\sqrt{8x+12}-1=0\left(2\right)\end{matrix}\right.\)
TH1: \(4x-\sqrt{8x+12}+1=0\Leftrightarrow4x+1=\sqrt{8x+12}\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x+1\ge0\\\left(4x+1\right)^2=8x+12\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-1}{4}\\16x^2=11\end{matrix}\right.\) \(\Rightarrow x=\dfrac{\sqrt{11}}{4}\)
TH2: \(8x-\sqrt{8x+12}-1=0\Leftrightarrow8x-1=\sqrt{8x+12}\)
\(\Leftrightarrow\left\{{}\begin{matrix}8x-1\ge0\\\left(8x-1\right)^2=8x+12\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{8}\\64x^2-24x-11=0\end{matrix}\right.\) \(\Rightarrow x=\dfrac{3+\sqrt{53}}{16}\)
Giải phương trình sau:
\(\sqrt{2x^2-12x+34}+\sqrt{4x^2-24x+40}=-3+6x-x^2\)
\(\sqrt{2\left(x-3\right)^2+16}\ge4\)
\(\sqrt{4\left(x-3\right)^2+4}\ge2\)
\(\Rightarrow VT\ge6\)
mà \(-x^2+6x-3=-\left(x-3\right)^2+6\le6\)
MÀ VT=VP\(\Rightarrow x=3\)
Bạn có thể lên đây để biết thêm chi tiết:
https://olm.vn/hoi-dap/detail/226308772808.html
giải phương trình: \(2x^3-4\sqrt{2}x^2+12x-8\sqrt{2}=0\)
\(x^3-2\sqrt{2}x^2+6x-4\sqrt{2}=0\)
\(\Leftrightarrow\left(x^3-\sqrt{2}x^2+4x\right)-\left(\sqrt{2}x^2+2x-4\sqrt{2}\right)=0\)
\(\Leftrightarrow x\left(x-\sqrt{2}x+4\right)-\sqrt{2}\left(x-\sqrt{2}x+4\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x^2-\sqrt{2}x+4\right)=0\)
\(\Leftrightarrow x=\sqrt{2}\)
giải phương trình nghiệm nguyên:
\(x^4-4x^3+12x^2-y^2-32x+10y+7=0\)
\(\Leftrightarrow x^4-4x^3+12x^2-32x+32=\left(y-5\right)^2\)
\(\Leftrightarrow\left(x-2\right)^2\left(x^2+8\right)=\left(y-5\right)^2\)
- Với \(x=2\Rightarrow y=5\)
- Với \(x\ne2\Rightarrow x-2\) là ước của \(y-5\)
Đặt \(y-5=n\left(x-2\right)\)
\(\Rightarrow\left(x-2\right)^2\left(x^2+8\right)=n^2\left(x-2\right)^2\)
\(\Rightarrow x^2+8=n^2\)
\(\Rightarrow\left(n-x\right)\left(n+x\right)=8\)
\(\Rightarrow\left[{}\begin{matrix}x=1;n=-3\Rightarrow y=8\\x=-1;n=-3\Rightarrow y=14\\x=1;n=3\Rightarrow y=2\\x=-1;n=3\Rightarrow y=-4\end{matrix}\right.\)
Bài 1:thu gọn biểu thức
\(\sqrt{3+2\sqrt{2}}-\sqrt{17-12\sqrt{2}}-5\sqrt{2}\)
Bài 2:giải phương trình
\(\sqrt{2x^2-12x+34}+\sqrt{4x^2-24x+40}=-3+6x+x^2\)
(Nghi binh 20/09)
Giải các phương trình sau:
a)\(32x^4-80x^3+50x^2+4x-3-4\sqrt{x-1}=0\)
b) \(\sqrt{5x^3-12x^2+12x-7}=\frac{x^2}{2}+2x-3\)
c)\(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)
d)\(x+\sqrt{2x-3}=1+\sqrt{x-1}+\sqrt{x^2-3x+3}\)
e) \(\left(2x-1\right)\sqrt{x^2+1}=x^2+4x-5\)
f)\(\sqrt{8+\sqrt{x}}+\sqrt{5-\sqrt{x}}=5\)
g)\(2\left(x^2+2x+3\right)=5\sqrt{x^3+3x^2+3x+2}\)
h)\(\sqrt[3]{81x-8}=x^3-2x^2+\frac{4}{3}x-2\)
i)\(\sqrt{x\left(x+1\right)}+\sqrt{x\left(x+2\right)}=\sqrt{x\left(x-3\right)}\)
\(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)
Ta đánh giá vế phải \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=\sqrt{2\left(x-4\right)^2+9}+\sqrt{3\left(x-4\right)^2+16}\ge\sqrt{9}+\sqrt{16}=3+4=7\)(Do \(\left(x-4\right)^2\ge0\forall x\))
Như vậy, để \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)(hay dấu "=" xảy ra) thì \(\left(x-4\right)^2=0\)hay x = 4
Vậy nghiệm duy nhất của phương trình là 4
f, \(\sqrt{8+\sqrt{x}}+\sqrt{5-\sqrt{x}}=5\left(đk:25\ge x\ge0\right)\)
\(< =>\sqrt{8+\sqrt{x}}-\sqrt{9}+\sqrt{5-\sqrt{x}}-\sqrt{4}=0\)
\(< =>\frac{8+\sqrt{x}-9}{\sqrt{8+\sqrt{x}}+\sqrt{9}}+\frac{5-\sqrt{x}-4}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)
\(< =>\frac{\sqrt{x}-1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{\sqrt{x}-1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)
\(< =>\left(\sqrt{x}-1\right)\left(\frac{1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}\right)=0\)
\(< =>x=1\)( dùng đk đánh giá cái ngoặc to nhé vì nó vô nghiệm )
Giải phương trình:
1,\(3sin^22x-2sin2x\times cos2x-4cos^22x=2\)
2,\(2\sqrt{3}cos^2x+6sinx\times cosx=3+\sqrt{3}\)
3,\(3cos^24x+5sin^24x=2-2\sqrt{3}sin4xcos4x\)
1.
\(3sin^22x-2sin2x.cos2x-4cos^22x=2\)
\(\Leftrightarrow-\dfrac{3}{2}\left(1-2sin^22x\right)-2sin2x.cos2x-2\left(2cos^22x-1\right)=\dfrac{5}{2}\)
\(\Leftrightarrow sin4x+\dfrac{7}{2}cos4x=-\dfrac{5}{2}\)
\(\Leftrightarrow\dfrac{\sqrt{53}}{2}\left(\dfrac{2}{\sqrt{53}}sin4x+\dfrac{7}{\sqrt{53}}cos4x\right)=-\dfrac{5}{2}\)
\(\Leftrightarrow sin\left(4x+arccos\dfrac{2}{\sqrt{53}}\right)=-\dfrac{5}{\sqrt{53}}\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+arccos\dfrac{2}{\sqrt{53}}=arcsin\left(-\dfrac{5}{\sqrt{53}}\right)+k2\pi\\4x+arccos\dfrac{2}{\sqrt{53}}=\pi-arcsin\left(-\dfrac{5}{\sqrt{53}}\right)+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{4}arccos\dfrac{2}{\sqrt{53}}+\dfrac{1}{4}arcsin\left(-\dfrac{5}{\sqrt{53}}\right)+\dfrac{k\pi}{2}\\x=\dfrac{\pi}{4}-\dfrac{1}{4}arccos\dfrac{2}{\sqrt{53}}-\dfrac{1}{4}arcsin\left(-\dfrac{5}{\sqrt{53}}\right)+\dfrac{k\pi}{2}\end{matrix}\right.\)
2.
\(2\sqrt{3}cos^2x+6sinx.cosx=3+\sqrt{3}\)
\(\Leftrightarrow\sqrt{3}\left(2cos^2x-1\right)+6sinx.cosx=3\)
\(\Leftrightarrow\sqrt{3}cos2x+3sin2x=3\)
\(\Leftrightarrow2\sqrt{3}\left(\dfrac{1}{2}cos2x+\dfrac{\sqrt{3}}{2}sin2x\right)=3\)
\(\Leftrightarrow cos\left(2x-\dfrac{\pi}{3}\right)=\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{3}=\dfrac{\pi}{6}+k2\pi\\2x-\dfrac{\pi}{3}=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{\pi}{12}+k\pi\end{matrix}\right.\)
3.
\(3cos^24x+5sin^24x=2-2\sqrt{3}sin4x.cos4x\)
\(\Leftrightarrow4cos^24x+4sin^24x-cos^24x+sin^24x=2-2\sqrt{3}sin4x.cos4x\)
\(\Leftrightarrow4-cos8x=2-\sqrt{3}sin8x\)
\(\Leftrightarrow cos8x-\sqrt{3}sin8x=2\)
\(\Leftrightarrow\dfrac{1}{2}cos8x-\dfrac{\sqrt{3}}{2}sin8x=1\)
\(\Leftrightarrow cos\left(8x+\dfrac{\pi}{3}\right)=1\)
\(\Leftrightarrow8x+\dfrac{\pi}{3}=k2\pi\)
\(\Leftrightarrow x=-\dfrac{\pi}{24}+\dfrac{k\pi}{4}\)
Giải phương trình : \(\sqrt{x^3+8}=2x-2+\dfrac{24x-18}{x^2-2x-7}\)
ĐKXĐ: \(x\geq -2\).
Nhận thấy x = -2 không là nghiệm của pt.
Xét x khác -2.
\(PT\Leftrightarrow\sqrt[3]{x^3+8}-\left(2x+4\right)=\dfrac{24x-18}{x^2-2x-7}-6\)
\(\Leftrightarrow\dfrac{\left(x+2\right)\left(x^2-6x-4\right)}{\sqrt[3]{x^3+8}+x+2}=\dfrac{-6\left(x^2-6x-4\right)}{x^2-2x-7}\)
\(\Leftrightarrow\dfrac{x+2}{\sqrt[3]{x^3+8}+x+2}=\dfrac{-6}{x^2-2x-7}\left(1\right)\) hoặc x2 - 6x - 4 = 0.
\(\left(1\right)\Rightarrow\left(x+2\right)\left(x^2-2x-1\right)=-6\sqrt[3]{x^3+8}\)
+) Nếu x \(\geq 7\) thì \(\left(x+2\right)\left(x^2-2x-1\right)>0\ge-6\sqrt{x^3+8}\) (loại)
+) Nếu \(x\le7\) thì \(\left(x+2\right)\left(x^2-2x-1\right)\ge-2\left(x+2\right)>-6\sqrt[3]{3\left(x+2\right)}\ge-6\sqrt[3]{x^3+8}\) (loại)
Do đó (1) vô nghiệm.
Do đó \(x^2-6x-4=0\Leftrightarrow\left[{}\begin{matrix}x=3+\sqrt{13}\left(TMĐK\right)\\x=3-\sqrt{13}\left(loại\right)\end{matrix}\right.\)
Vậy...
Giải phương trình :\(x^2+8x+16-2\left(x+1\right).\sqrt{2x+5}-2\sqrt{3x^2+24x+21}=0\)
\(\left(\sqrt{2x+5}-\left(x+1\right)\right)^2+\left(\sqrt{3\left(x+1\right)}-\sqrt{x+7}\right)^2=0.\\
\)
Đến đây chắc biết phải làm gì =))