\(\Delta ABC\)cân tại A, kẻ \(BD\perp AC,CE\perp AB\left(D\in AC,E\in AB\right)\).Gọi I là giao điểm của BD và CE.CM
a) BD=CE
b) AI là tia phân giác của \(\widehat{BAC}\)
Cho tam giác ABC có AB = AC, lấy D \(\in\) AC, E \(\in\) AB sao cho \(\widehat{ADB}=\widehat{AEC}\). BD cắt CE tại I. Chứng minh:
a. BD = CE
b. tam giác EIB = tam giác DIC
c. AI là tia phân giác của \(\widehat{BAC}\)
d. AI \(\perp\)BC
e. DE // BC
Các bạn vẽ hình và giải giúp mik nhé!
a )ta có góc ADB =góc AEC
mà góc A là góc chung
=>góc ECA=góc DBA
Xét △ADB và △AEC có
góc A là góc chung
góc ABD=góc ACE
AB=AC(giả thiết )
=> △ADB=△AEC(g-c-g)
=>BD=CE
vậy BD =CE
b)ta có góc AEC+góc BEC =180 độ
góc ADB +góc CDB =180 độ
mà góc AEC=góc ADB (giả thiết)
=>góc BEC =góc CDB hay góc BEI =góc CDI
ta có △ADB =△AEC(chứng minh câu a)
=>AD=AE
mà AB=AC( giả thiết)
=>BE =DC
xét △BEI và △CDI có
góc BEI =góc CDI (chứng minh trên)
góc EIB=góc DIC(2 góc đối đỉnh)
=>góc EBI =góc DCI hay góc ABI=góc ACI
Xét △EBI và △DCI có
góc EBI =góc DCI(chứng minh trên)
góc BEI =góc CDI(chứng minh trên)
BE=DC(chứng minh trên )
=>△EBI = △DCI (g-c-g)
vậy △EBI = △DCI
c)ta có △EBI = △DCI(chứng minh câu b)
=>BI =IC
Xét △AIB và △AIC có
AB=AC(giả thiết )
góc ABI =ACI(chứng minh câu b)
BI =CI(chứng minh trên )
=> △AIB = △AIC(c-g-c)
=>góc BAI =góc CAI
vây AI là tia phân giác của góc BAC
d) kéo dài AI cắt BC tại F;ta có góc BAI=góc CAI(chứng minh câu b)hay góc BAD=góc CAD
ta có AB =AC => △ABC cân tại A=> góc B=góc C
Xét △BADvà △CAD có
AB=AC(giả thiết )
góc BAD =góc CAD
AI là cạnh chung
=>△BAD=△CAD(c-g-c)
=>góc AIB=gócAIC
mà góc AIB+gócAIC =180 độ
=> góc AIB =góc AIC =\(\dfrac{180độ}{2}\)=90 độ
vậy AI ⊥BC
e)ta có △ABC cân tại A =>góc ACB =\(\dfrac{180-gócA}{2}\)
ta có AD=AE (chứng minh câu b) => △AED cân tại A
=> góc ADE=\(\dfrac{180-\text{góc A}}{2}\)
=> góc ACB =góc ADE mà 2 góc này là 2 góc đồng vị của đường thẳng CA cắt ED và BC => ED//BC
vậy ED//BC
nhớ tim nha
Cho \(\Delta ABC\) có AB = AC, kẻ \(BD\perp AC\); \(CE\perp AB\) \(\left(D\in AC;E\in AB\right)\) . BD cắt CE tại O. C/minh:
a, BD = CE
b, \(\Delta OEB=\Delta ODC\)
c, AO là tia phân giác của \(\widehat{BAC}\)
Cho tam giác ABC cân tại A, gọi M là trung điểm của canh BC. Trên đoạn thẳng MB lấy điểm D, trên đoạn thẳng MC lấy điểm E sao cho BD=CE. Kẻ \(DH\perp AB,EK\perp AC\left(H\in AB,K\in AC\right)\).Gọi O là giao điểm của DH và EK. Chứng minh
a) \(\Delta ABD=\Delta ACE\)
b) DH=EK
c) AO là phân giác của \(\widehat{BAC}\)
d) 3 điểm A,M,O thẳng hàng
Cho \(\Delta ABC\) có AB = AC. Kẻ BD vuông góc với AC; CE \(\perp\)AB ( \(D\in AC;E\in AB\)). Gọi O là giao điểm của BD và CE. Chứng minh:
a) BD = CE
b) \(\Delta OEB=\Delta ODC\)
c) AO là tia phân giác của \(\widehat{BAC}\)
a,
xét tam giác abd và tam giác ace có
ab=ac(gt)
góc adb=góc aec=90 độ(gt)
góc a chung
=>tam giác abd= tam giác ace(cgc)
=>bd=ce(2 cạnh tg ứng)
từ cma ta có : tam giác abd=tam giác ace
=>ad=ae(2canhj tg ứng)
lại có ab=ac(gt)
=>ab-ad=ac-ae
=>bd=ec
xét tam giác oeb và tam giác odc có
be=cd(cmt)
góc eob=góc doc(đối đỉnh)
góc oeb=góc odc=90độ(gt)
=>tam giác oeb = tam giác odc có
từ cmb ta có tam giác oeb=tam giác oec
=>ob=oc(2 cạnh tg ứng)
xét tam giác abo và tam giác ac có
ab=ac(gt)
ob=oc(cmt)
ao chung
=>tam giác abo = tam giác ac(ccc)
=>góc bao=góc cao(2 góc tg ứng)
=>ao là p/g của tam giác abc
cho \(\Delta\)ABC có AB=AC, kẻ BD \(\perp\)AC, kẻ CE\(\perp\)AB(D\(\in\)AC, E\(\in\)AB). Gọi O là giao điểm của BD và CE. Chứng minh:
a)BD=CE
b)\(\Delta\)OEB=\(\Delta\)ODC
c)AO tia phân giác của góc BAC
d)Gọi H là trung điểm của BC.Chứng minh rằng: A,O,C thẳng hàng
Cho \(\Delta ABC\) có AB = AC, kẻ BD \(\perp\) AC, CE\(\perp\) AB ( D thuộc AC, E thuộc AB ). Gọi O là giao điểm của BD và CE. Chứng minh:
a/ BD=CE
b/ \(\Delta OEB=\Delta ODC\)
c/ AO là tia phân giác của góc BAC
a)Xét ΔADB và ΔAEC có:
\(\widehat{ADB}=\widehat{AEC}=90^o\)
AB=AC(gt)
\(\widehat{A}\) : góc chung
=> ΔADB=ΔAEC ( cạnh huyền - góc nhọn)
=> BD=CE
b) Vì ΔADB=ΔAEC(cmt)
=> \(\widehat{ABD}=\widehat{ACE};AD=AE\)
Có: AB=AE+BE
AC=AD+DC
Mà: AB=AC(gt); AE=AD(cmt)
=>BE=DC
Xét ΔOEB và ΔODC có:
\(\widehat{OEB}=\widehat{ODC}=90^o\)
BE=DC(cmt)
\(\widehat{EBO}=\widehat{DCO}\left(cmt\right)\)
=> ΔOEB=ΔODC(g.c.g)
c) Vì: ΔOEB=ΔODC (cmt)
=> OB=OC
Xét ΔAOB và ΔAOC có:
AB=AC(gt)
\(\widehat{ABO}=\widehat{ACO}\left(cmt\right)\)
OB=OC(cmt)
=> ΔAOB=ΔAOC(c.g.c)
=> \(\widehat{OAB}=\widehat{OAC}\)
=> AO là tia pg của \(\widehat{BAC}\)
Cho tam giác ABC cân tại A, gọi M là trung điểm của cạnh BC. Trên đoạn thẳng MB lấy điểm D, trên đoạn thẳng MC lấy điểm E sao cho BD=CE. Kẻ \(DH\perp AB,EK\perp AC\left(H\in AB,K\in AC\right)\). Gọi O là giao điểm của DH và EK. Chứng minh
a) \(\Delta ABD=\Delta ACE\)
b) DH=EK
c) AO là phân giác của góc BAC
d) 3 điểm A,M,O thẳng hàng
a,xét tam giác ABD và tam giác ACE có:
AB=AC(gt)
vì \(\widehat{ABC}\)=\(\widehat{ACB}\)suy ra \(\widehat{ABD}\)=\(\widehat{ACE}\)
BD=CE(gt)
\(\Rightarrow\)\(\Delta\)ABD=\(\Delta\)ACE(c.g.c)
b,xét 2 tam giác vuông ADH và AEK có:
AD=AE(theo câu a)
\(\widehat{DAH}\)\(\widehat{EAK}\)(theo câu a)
\(\Rightarrow\)\(\Delta\)ADH=\(\Delta\)AEK(CH-GN)
\(\Rightarrow\)DH=EK
c,xét tam giác AHO và tam giác AKO có:
AH=AK(theo câu b)
AO cạnh chung
\(\Rightarrow\)\(\Delta\)AHO=\(\Delta\)AKO( cạnh góc vuông-cạnh huyền)
\(\Rightarrow\)\(\widehat{HAO}\)=\(\widehat{KAO}\)
\(\Rightarrow\)AO là phận giác của góc BAC
d,câu này dễ nên bn có thể tự làm tiếp nhé
Cho tam giác ABC có AB=AC,kẻ BD vuông góc với AC ,CE vuông góc với AB(D thuộc AC E thuộc AB ).Gọi O là giao điểm của BD và CE.Chứng minh:
a,BD=CE
b, AI là tia phân giác của góc BAC
a) Xét 2 tam giác vuông tam giác ABD và tam giác ACE ta có:
AB = AC (GT)
Góc BAC: chung
=> Tam giác ABD = Tam giác ACE (c.h - g.n)
=> BD = CE (2 cạnh tương ứng)
b) Tam giác ABD = Tam giác ACE (cmt)
=> AD = AE (2 cạnh tương ứng)
Xét 2 tam giác vuông tam giác AEO và tam giác ADO ta có:
AD = AE (cmt)
OA: cạnh chung
=> Tam giác AEO = tam giác ADO (c.h - c.g.v)
=> Góc EAO = Góc DAO (2 góc tương ứng)
=> AO là phân giác của góc EAD
Hay: AO là phân giác của góc BAC
Cho ΔABC có AB=AC , kẻ BD⊥AC tại D, CE ⊥AB tại E
a)CMR ΔABD=ΔACE
b)CMR BD=CE
c)Gọi O là giao điểm của BD và CE . CMR ΔOEB=ΔODC
d)CMR AO là tia phân giác \(\widehat{BAC}\)
Hình vẽ:
Giải:
a) Xét \(\Delta ABD\) và \(\Delta ACE\), có:
\(\widehat{ADB}=\widehat{AEC}=90^0\left(gt\right)\)
\(\widehat{BAC}\) chung
\(AB=AC\left(gt\right)\)
\(\Rightarrow\Delta ABD=\Delta ACE\left(ch-gn\right)\)
b) Vì \(\Delta ABD=\Delta ACE\) (câu a)
\(\Rightarrow BD=CE\) (Hai cạnh tương ứng)
c) Ta có: \(AB=AC\left(gt\right)\)
Và \(AE=AD\left(\Delta ABD=\Delta ACE\right)\)
Lấy vế trừ vế, ta được:
\(\Leftrightarrow AB-AE=AC-AD\)
\(\Leftrightarrow BE=CD\)
Xét \(\Delta OEB\) và \(\Delta ODC\), ta có:
\(BE=CD\) (Chứng minh trên)
\(\widehat{OEB}=\widehat{ODC}=90^0\left(gt\right)\)
\(\widehat{EBO}=\widehat{DCO}\) (\(\Delta ABD=\Delta ACE\))
\(\Rightarrow\Delta OEB=\Delta ODC\) (cạnh góc vuông _ góc nhọn kề)
d) Có BD và CE là đường cao của tam giác ABC
Mà BD cắt CE tại O
=> O là trực tâm của tam giác ABC
=> AO là đường cao thứ ba của tam giác ABC
Mà tam giác ABC là tam giác cân tại A (AB = AC)
=> AO đồng thời là tia phân giác của \(\widehat{BAC}\).