Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Anh Tú
Xem chi tiết
Minh Triều
Xem chi tiết
Trần Đức Thắng
15 tháng 8 2015 lúc 15:32

Đặt t = x - 2012 

=> P = t^2 + ( t + 4025 )^2

    P = t^2 + t^2 + 8050t + 4025^2

   P = 2t^2 + 8050t + 4025^2

       = 2 ( t^2 + 4025t ) + 4025^2

         = 2 ( t^2 + 2.t.4025/2 + 4025^2/4 ) -  4025^2/2 + 4025^2 

         = 2 ( t + 4025/2 )^2 + 4025^2 - 4025^2/2 

Vậy GTNN là 4025^2 - 4025^2/2 khi t + 4025/2 = 0 => t = -4025/2 

=> x - 2012 = -4025/2 => x = ... 

ngọc linh
Xem chi tiết
Trên con đường thành côn...
1 tháng 1 2022 lúc 19:33

ĐKXĐ: \(x-2013\ge0\Leftrightarrow x\ge2013\)

Ta có:

\(A=\sqrt{x-2013-2\sqrt{x-2013}+1}+\sqrt{x-2013-90\sqrt{x-2013}+2025}\)

\(=\sqrt{\left(\sqrt{x-2013}-1\right)^2}+\sqrt{\left(\sqrt{x-2013}-45\right)^2}\)

\(=\left|\sqrt{x-2013}-1\right|+\left|\sqrt{x-2013}-45\right|\)

\(=\left|\sqrt{x-2013}-1\right|+\left|45-\sqrt{x-2013}\right|\)

\(\ge\left|\sqrt{x-2013}-1+45-\sqrt{x-2013}\right|\)

\(=\left|-1+45\right|=\left|44\right|=44\)

Vậy GTNN của A là 44, đạt được khi và chỉ khi \(\left(\sqrt{x-2013}-1\right)\left(45-\sqrt{x-2013}\right)\ge0\)

\(\Leftrightarrow1\le\sqrt{x-2013}\le45\)

\(\Leftrightarrow1\le x-2013\le2025\)

\(\Leftrightarrow2014\le x\le4038\left(tm\right)\)

Hun Pa Han
Xem chi tiết
Thắng Nguyễn
28 tháng 11 2017 lúc 12:26

Áp dụng BĐT AM-GM ta có:

\(A=\frac{2011x+2012\sqrt{1-x^2}+2013}{\sqrt{1-x^2}}\)\(=\frac{2011x+2013}{\sqrt{1-x^2}}+2012\)

\(=\frac{2012\left(x+1\right)+\left(1-x\right)}{\sqrt{1-x^2}}+2012\)\(\ge\frac{2\sqrt{2012\left(x+1\right)\left(1-x\right)}}{\sqrt{1-x^2}}+2012\)

\(\ge\frac{2\sqrt{2012\left(1-x^2\right)}}{\sqrt{1-x^2}}+2012=2\sqrt{2012}+2012\)

Cậu Bé Ngu Ngơ
Xem chi tiết
Ánh Lê
12 tháng 2 2019 lúc 14:12

Đặt

x-2012 = a , ta sẽ có :

P= \(a^2+\left(a+4025\right)^2\)

\(=a^2+a^2+8050a+4025^2\)

\(=2a^2+8050a+4025^2\)

\(=2\left(a^2+4025a\right)+4025^2\)

= 2( \(a^2+2\cdot\dfrac{4025}{2}\cdot a+\dfrac{4025^2}{4}\))\(-\dfrac{4025^2}{4}+4025^2\)

= \(2\left(a+\dfrac{4025}{2}\right)^2+4025^2-\dfrac{4025^2}{2}\)

\(=2\left(a+\dfrac{4025}{2}\right)^2+\dfrac{4025\left(2\cdot4025-4025\right)}{2}\)

\(=2\left(a+\dfrac{4025}{2}\right)^2+\dfrac{4025^2}{2}\ge\dfrac{4025^2}{2}\)

=> MinP = \(\dfrac{4025^2}{2}\) khi \(a+\dfrac{4025}{2}=0\Rightarrow a=-\dfrac{4025}{2}\)

Mà x -2012 = \(-\dfrac{4025}{2}\Rightarrow x=2012-\dfrac{4025}{2}=-\dfrac{1}{2}\)

Vậy GTNN của P = \(\dfrac{4025^2}{2}\) khi x = \(-\dfrac{1}{2}\)

Nguyễn Lâm Bằng
Xem chi tiết
Nobita Kun
Xem chi tiết
Obama là thần tượng của...
20 tháng 1 2016 lúc 19:36

|x + 2013|  lớn hơn hoặc bằng 0,|y - 2012| lớn hơn hoặc bằng 0

=>|x + 2013| + |y - 2012| lớn hơn hoặc bằng 0

khi |x + 2013| + |y - 2012| lớn hơn hoặc bằng 0 thì x=-2013,y=2012

vậy x=-2013,y=2012 

tick nhé

Ran Mori
Xem chi tiết
SKT_ Lạnh _ Lùng
2 tháng 4 2016 lúc 16:19

Đặt P = x - 2012 

=> P = t^2 + ( t + 4025 )^2

    P = t^2 + t^2 + 8050t + 4025^2

   P = 2t^2 + 8050t + 4025^2

       = 2 ( t^2 + 4025t ) + 4025^2

         = 2 ( t^2 + 2.t.4025/2 + 4025^2/4 ) -  4025^2/2 + 4025^2 

         = 2 ( t + 4025/2 )^2 + 4025^2 - 4025^2/2 

Vậy GTNN là 4025^2 - 4025^2/2 khi t + 4025/2 = 0 => t = -4025/2 

=> x - 2012 = -4025/2 => x = ... 

Nguyễn Mạnh Quỳnh
Xem chi tiết