tính nhanh tổng sau :
S = 1/2 + 1/22 +1/23 +.....+ 1/210
help me
Tính tổng sau:
a) S = 1 + 2 + 22 + 23 +.....+ 22022
b) S = 4 + 41 + 43 +.......+ 42022
a) \(S=1+2+2^2+2^3+...+2^{2022}=\dfrac{2^{2022+1}-1}{2-1}=2^{2023}-1\)
b) \(S=1+4+4^2+4^3+...+4^{2022}=\dfrac{4^{2022+1}-1}{4-1}=\dfrac{4^{2023}-1}{3}\)
\(S=1+2+2^2+2^3+...+2^{2022}\\ 2S=2+2^2+2^3+2^4+...+2^{2023}\\ 2S-S=2+2^2+2^3+2^4+...+2^{2023}-1-2-2^2-2^3-...-2^{2022}\\ S=2^{2023}-1\\ S=4+4^2+4^3+...+4^{2022}\\ 4S=4^2+4^3+4^4+...+4^{2023}\\ 4S-S=4^2+4^3+4^4+...+4^{2023}-4-4^2-4^3-...-4^{2023}\\ 3S=4^{2023}-4\\ S=\dfrac{4^{2023}-4}{3}\)
So sánh tổng S với 251
S = 1+2+22+23+...+2501+2+22+23+...+250
Mai mk thi r làm bài này Giúp mình với. HELP ME !!! thanks các bạn
có phép trừ ko
nếu ko có thì tổng đó lớn hơn 251
rõ ràng mà
bài 1:cho S = 1+2+22+23+...+22023
a. tính tổng
b.cho B = 22024 so sánh S và B
bài 2: tính tổng H=3+32+33+...+32022
Bài 1
a) S = 1 + 2 + 2² + 2³ + ... + 2²⁰²³
2S = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²⁴
S = 2S - S = (2 + 2² + 2³ + ... + 2²⁰²⁴) - (1 + 2 + 2² + 2³)
= 2²⁰²⁴ - 1
b) B = 2²⁰²⁴
B - 1 = 2²⁰²⁴ - 1 = S
B = S + 1
Vậy B > S
a,
\(S=1+2+2^2+...+2^{2023}\)
\(2S=2+2^2+2^3+...+2^{2024}\)
\(\Rightarrow S=2^{2024}-1\)
b.
Do \(2^{2024}-1< 2^{2024}\)
\(\Rightarrow S< B\)
2.
\(H=3+3^2+...+3^{2022}\)
\(\Rightarrow3H=3^2+3^3+...+3^{2023}\)
\(\Rightarrow3H-H=3^{2023}-3\)
\(\Rightarrow2H=3^{2023}-3\)
\(\Rightarrow H=\dfrac{3^{2023}-3}{2}\)
Bài 2
H = 3 + 3² + 3³ + ... + 3²⁰²²
⇒ 3H = 3² + 3³ + 3⁴ + ... + 3²⁰²³
⇒2H = 3H - H
= (3² + 3³ + 3⁴ + ... + 3²⁰²³) - (3 + 3² + 3³ + ... + 3²⁰²²)
= 3²⁰²³ - 3
⇒ H = (3²⁰²³ - 3) : 2
Cho A = 1 + 2 + 22 + 23 +....+ 211
Không tính tổng A, hãy chứng tỏ A chia hết cho 3.
Help me.
\(A=\left(1+2\right)+2^2\left(1+2\right)+...+2^{10}\left(1+2\right)=3+2^2.3+...+2^{10}.3=3\left(1+2^2+...+2^{10}\right)⋮3\)
\(A=1+2+2^2+2^3+...+2^{10}+2^{11}\)
\(=\left(1+2\right)+2^2\left(1+2\right)+...+2^{10}\left(1+2\right)\)
\(=\left(1+2\right)\left(1+2^2+...+2^{10}\right)\)
\(=3\left(1+2^2+...+2^{10}\right)\) ⋮3
tính tổng của dãy sau :
B = 2 + 22 + 23 + 24 +...+2100
2. chúng minh rằng A= 1 + 3 + 32 +33+...+399 ⋮ 40
mn giúp mình nhanh nhất nha ^^ cảm ơn mn
\(B=2+2^2+2^3+...+2^{100}\)
\(\Rightarrow2B=2^2+2^3+2^4+...+2^{101}\)
\(\Rightarrow2B-B=2^2+2^3+2^4+...+2^{101}-2-2^2-2^3-...-2^{100}\)
\(\Rightarrow2B-B=2^{101}-2\)
\(A=1+3+3^2+3^3+...+3^{99}\\ \Rightarrow A=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\)
\(\Rightarrow A=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+...+3^{96}\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=\left(1+3+3^2+3^3\right)\left(1+3^4+...+9^{96}\right)\)
\(\Rightarrow A=40\left(1+3^4+...+9^{96}\right)⋮40\)
Giúp mik vs Tính tổng sau: E=1-2+22-23+...+21000
Lời giải:
$E=1-2+22-23+24-25+.....+21000$
$=(1-2)+(22-23)+(24-25)+......+(20998-20999)+21000$
$=(-1)+(-1)+(-1)+....+(-1)+21000$
Số lần xuất hiện của -1: $[(20999-22):1+1]:2+1=10490$
$E=(-1).10490+21000=10510$
Tính tổng S = C n 0 + 2 2 - 1 2 C n 1 + 2 3 - 1 3 C n 2 + . . . + 2 n + 1 - 1 n + 1 C n n
A. 3 n + 2 - 2 n + 2 n + 2
B. 3 n + 1 - 2 n + 1 n + 1
C. 3 n + 2 + 2 n + 2 n + 2
D. 3 n + 1 + 2 n + 1 n + 1
Tính tổng S = C n 0 + 2 2 − 1 2 C n 1 + 2 3 − 1 3 C n 2 + 2 4 − 1 4 C n 3 + ... + 2 n + 1 − 1 n + 1 C n n
A. S = 3 n + 2 − 2 n + 2 n + 2
B. S = 3 n + 1 − 2 n + 1 n + 1
C. S = 3 n + 2 + 2 n + 2 n + 2
D. S = 3 n + 1 + 2 n + 1 n + 1
Xét tổng S gồm 20 số hạng:
S=1/1×2×3×4+1/2×3×4×5+...+1/20×21×22×23.
Hãy so sánh tổng S với 1/18
cậu ko giúp cậu ấy thì thôi đừng bảo như thế