\(GPT:2\sqrt{x+3}-\sqrt[3]{3x+5}=2\)
Gpt
\(\sqrt{3x+3}-\sqrt{5-2x}-x^3+3x^2+10x-16=0\)
Gpt:
a.\(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)
b. \(\sqrt{4x+1}-\sqrt{3x-2}=\dfrac{x+3}{5}\)
c.\(\sqrt{x^2-3x+2}-\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
\(\sqrt{x^2-3x+2}-\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
\(\Leftrightarrow\left(\sqrt{x^2-3x+2}-\sqrt{x-2}\right)-\left(\sqrt{x^2+2x-3}+\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\dfrac{\left(x^2-3x+2\right)-\left(x-2\right)}{\sqrt{x^2-3x+2}+\sqrt{x-2}}-\dfrac{\left(x^2+2x-3\right)-\left(x+3\right)}{\sqrt{x^2+2x-3}-\sqrt{x+3}}=0\)
\(\Leftrightarrow\dfrac{\left(x-2\right)^2}{\sqrt{\left(x-2\right)\left(x-1\right)}+\sqrt{x-2}}-\dfrac{\left(x-2\right)\left(x+3\right)}{\sqrt{\left(x+3\right)\left(x-1\right)}-\sqrt{x+3}}=0\)
\(\Leftrightarrow\left(x-2\right)\left[\dfrac{x-2}{\sqrt{x-2}\left(\sqrt{x-1}+1\right)}-\dfrac{x+3}{\sqrt{x+3}\left(\sqrt{x-1}-1\right)}\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left[\dfrac{\sqrt{x-2}}{\sqrt{x-1}+1}-\dfrac{\sqrt{x+3}}{\sqrt{x-1}-1}\right]=0\)
Pt \(\dfrac{\sqrt{x-2}}{\sqrt{x-1}+1}-\dfrac{\sqrt{x+3}}{\sqrt{x-1}-1}=0\) vô no
(vì \(\dfrac{\sqrt{x-2}}{\sqrt{x-1}+1}< \dfrac{\sqrt{x+3}}{\sqrt{x-1}-1}\forall x\ge2\Rightarrow VT< 0\))
=> x - 2 = 0
<=> x = 2 (nhận)
\(\sqrt{4x+1}-\sqrt{3x-2}=\dfrac{x+3}{5}\)
\(\Leftrightarrow\dfrac{\left(4x+1\right)-\left(3x-2\right)}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{x+3}{5}=0\)
\(\Leftrightarrow\dfrac{x+3}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{x+3}{5}=0\)
\(\Leftrightarrow\left(\dfrac{1}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{1}{5}\right)\left(x+3\right)=0\)
TH1:
x + 3 = 0
<=> x = - 3 (loại)
TH2:
\(\dfrac{1}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{1}{5}=0\)
\(\Leftrightarrow\sqrt{4x+1}+\sqrt{3x-2}=5\)
\(\Leftrightarrow\left(\sqrt{4x+1}-3\right)+\left(\sqrt{3x-2}-2\right)=0\)
\(\Leftrightarrow\dfrac{4x+1-9}{\sqrt{4x+1}+3}+\dfrac{3x-2-4}{\sqrt{3x-2}+2}=0\)
\(\Leftrightarrow\dfrac{4\left(x-2\right)}{\sqrt{4x+1}+3}+\dfrac{3\left(x-2\right)}{\sqrt{3x-2}+2}=0\)
\(\Leftrightarrow\left(\dfrac{4}{\sqrt{4x+1}+3}+\dfrac{3}{\sqrt{3x-2}+2}\right)\left(x-2\right)=0\)
Pt \(\dfrac{4}{\sqrt{4x+1}+3}+\dfrac{3}{\sqrt{3x-2}+2}>0\forall x\ge\dfrac{2}{3}\) => vô no
=> x - 2 = 0
<=> x = 2 (nhận)
~ ~ ~
Vậy x = 2
\(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)
\(\Leftrightarrow\sqrt{2\left(x^2+4x+3\right)}-\left[\left(2x+2\right)-\sqrt{x^2-1}\right]=0\)
\(\Leftrightarrow\sqrt{2\left(x+3\right)\left(x+1\right)}-\dfrac{\left(4x^2+8x+4\right)-\left(x^2-1\right)}{\sqrt{x^2-1}+2x+2}=0\)
\(\Leftrightarrow\sqrt{2\left(x+3\right)\left(x+1\right)}-\dfrac{\left(x+1\right)\left(3x+5\right)}{\sqrt{\left(x-1\right)\left(x+1\right)}+2\left(x+1\right)}=0\)
\(\Leftrightarrow\sqrt{x+1}\left[2\sqrt{x+3}-\dfrac{\sqrt{x+1}\left(3x+5\right)}{\sqrt{x+1}\left(\sqrt{x-1}+2\sqrt{x+1}\right)}\right]=0\)
\(\Leftrightarrow\sqrt{x+1}\left[2\sqrt{x+3}-\dfrac{3x+5}{\sqrt{x-1}+2\sqrt{x+1}}\right]=0\)
TH1
x + 1 = 0
<=> x = - 1 (loại)
TH2
\(2\sqrt{x+3}-\dfrac{3x+5}{\sqrt{x-1}+2\sqrt{x+1}}=0\)
mà \(2\sqrt{x+3}=\dfrac{4x+12}{2\sqrt{x+3}}>\dfrac{3x+5}{\sqrt{x-1}+2\sqrt{x+1}}\forall x\ge1\)
=> VT > 0
=> vô no
~ ~ ~
Vậy pt vô no
GPT : \(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
gpt : a. \(x^2-7x=6\sqrt{x+5}-30\)
b. \(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x-1\right)}-\sqrt{x^2-3x-4}\)
a) Điều kiện $x \ge -5$. Đặt $\sqrt{x+5}=a$ thì $x=a^2-5$. Thay vào ta có $$\begin{array}{l} (a^2-5)^2-7(a^2-5)=6a-30 \\ \Leftrightarrow a^4-17a^2-6a+90=0 \Leftrightarrow (a^2+6a+10)(a-3)^2=0 \end{array}$$
Vậy $a=3 \Leftrightarrow \boxed{ x= 4}$.
GPT
a) \(\sqrt[3]{x^4+X^2}+2\sqrt[5]{X^5+X^2+2}=\sqrt[3]{X^4+3X-2}+2\sqrt[5]{X^5+3X}\)
b) \(4\sqrt{x+1}+2\sqrt{2x+3}=\left(x-1\right)\left(x^2-2\right)\)
các bạn giải giúp mik với. mình đang cần gấp
gpt:
\(\sqrt{x^3+x^2+3x+3}+\sqrt{2x}=\sqrt{x^2+3}+\sqrt{2x^2+2x}\)
GPT : \(\sqrt[3]{x+1}+\sqrt[3]{x+2}=1+\sqrt[3]{x^2+3x+2}\)
\(\sqrt[3]{x+1}+\sqrt[3]{x+2}=1+\sqrt[3]{x^2+3x+2}\)
\(\Rightarrow\sqrt[3]{x+1}+\sqrt[3]{x+2}=1+\sqrt[3]{\left(x+1\right)\left(x+2\right)}\)
\(\Rightarrow\sqrt[3]{x+1}-1-\sqrt[3]{x+1}.\sqrt[3]{x+2}+\sqrt[3]{x+2}=0\)
\(\Rightarrow\left(\sqrt[3]{x+1}-1\right)-\sqrt[3]{x+2}\left(\sqrt[3]{x+1}-1\right)=0\)
\(\Rightarrow\left(\sqrt[3]{x+1}-1\right)\left(1-\sqrt[3]{x+2}\right)=0\)
Th1 : \(\sqrt[3]{x+1}-1=0\Rightarrow\sqrt[3]{x+1}=1\)
\(\Rightarrow x+1=1\Rightarrow x=0\)
Th2 : \(\sqrt[3]{x+2}-1=0\Rightarrow\sqrt[3]{x+2}=1\)
\(\Rightarrow x+2=1\Rightarrow x=-1\)
Vậy \(x\in\left\{0;-1\right\}\)
GPT : \(\sqrt[3]{3x^2-x+2001}-\sqrt[3]{3x^2-7x+2002}-\sqrt[3]{6x-2003}=\sqrt[3]{2002}\)
mình giải bằng casio ra x = 0,767591877
sao bạn lại có chữ hiệp sĩ ở bên cạnh tên vậy?
sao vậy bạn
k mk nha
Em thử ạ!
Đặt \(\sqrt[3]{3x^2-x+2011}=a;\sqrt[3]{3x^3-7x+2002}=b;\sqrt[3]{6x-2003}=c\)
Thì được: \(a^3-b^3-c^3=2002\) (1)
Mặt khác theo đề bài \(\left(a-b-c\right)^3=2002\) (2)
Từ (1) và (2) ta được: \(a^3-b^3-c^3-\left(a-b-c\right)^3=0\)
\(\Leftrightarrow3\left(b-a\right)\left(c-a\right)\left(c+b\right)=0\)
\(\Leftrightarrow a=b\text{ hoặc: }c=a\text{ hoặc }c+b=0\)
+) Với a= b thì \(a^3=b^3\Leftrightarrow3x^2-x+2001=3x^2-7x+2002\)
\(\Leftrightarrow6x-1=0\Leftrightarrow x=\frac{1}{6}\)
... Anh làm tiếp thử ạ.
GPT \(\sqrt{x^2-3x+2}=\sqrt{10x-20}-\sqrt{x-3}\)