Tìm giá trị nhỏ nhất của biểu thức :
\(P=x^2-x\sqrt{y}+x+y-\sqrt{y}+1\)
Tìm giá trị nhỏ nhất của biểu thức sau \(A=x\sqrt{y+1}+y\sqrt{x+1}\), với \(x^2+y^2=1\)
Áp dụng BĐT BSC và BĐT \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\):
\(A=x\sqrt{y+1}+y\sqrt{x+1}\)
\(\Rightarrow A^2=\left(x\sqrt{y+1}+y\sqrt{x+1}\right)^2\)
\(\le\left(x^2+y^2\right)\left(x+y+2\right)\)
\(\le\left(x^2+y^2\right)\left[\sqrt{2\left(x^2+y^2\right)}+2\right]=\sqrt{2}+2\)
\(\Rightarrow-\sqrt{\sqrt{2}+2}\le A\le\sqrt{\sqrt{2}+2}\)
\(\Rightarrow minA=\sqrt{\sqrt{2}+2}\Leftrightarrow x=y=-\dfrac{1}{\sqrt{2}}\)
cho 2 số thực x,y thỏa mãn điều kiên \(x+y+25=8\left(\sqrt{x-1}+\sqrt{y-5}\right)\). Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức: \(P=\sqrt{\left(x-1\right)\left(y-5\right)}\)
Tìm giá trị nhỏ nhất của biểu thức \(P=x^2-x\sqrt{y}+x+y-\sqrt{y}+1\)
tìm giá trị nhỏ nhất của biểu thức \(P=x^2-x\sqrt{y}+x+y-\sqrt{y}+1\)
Tìm giá trị nhỏ nhất của biểu thức :
P=\(x^2-x\sqrt{y}+x +y-\sqrt{y}+1\)
Ta có :
\(P=x^2-x\sqrt{y}+x+y-\sqrt{y}+1\)
\(\Leftrightarrow\)\(2P=2x^2-2x\sqrt{y}+2x+2y-2\sqrt{y}+2\)
\(\Leftrightarrow\)\(2P=\left[\left(x^2-2x\sqrt{y}+y\right)+\frac{4}{3}\left(x-\sqrt{y}\right)+\frac{4}{9}\right]+\left(x^2+\frac{2x}{3}+\frac{1}{9}\right)+\left(y-\frac{2}{3}.\sqrt{y}+\frac{1}{9}\right)+\frac{4}{3}\)
\(\Leftrightarrow\)\(2P=\left(x-\sqrt{y}+\frac{2}{3}\right)+\left(x+\frac{1}{3}\right)^2+\left(y^2-\frac{1}{3}\right)^2+\frac{4}{3}\ge\frac{4}{3}\)
\(\Leftrightarrow\)\(2P\ge\frac{4}{3}\)
\(\Rightarrow\)\(P\ge\frac{2}{3}\)
Vậy \(P_{min}=\frac{2}{3}\)
àk chỗ \(\left(x-\sqrt{y}+\frac{2}{3}\right)\) mình nhầm nhé phải là \(\left(x-\sqrt{y}+\frac{2}{3}\right)^2\)
hihi tại nhìu số quá nên nhìn nhầm sorry :'P
Cho x, y > 0 thỏa mãn x + y = 1. Tìm giá trị nhỏ nhất của biểu thức P = \(\dfrac{x}{\sqrt{1-x}}+\dfrac{y}{\sqrt[]{1-y}}\)
\(P=\dfrac{x}{\sqrt{x+y-x}}+\dfrac{y}{\sqrt{x+y-y}}=\dfrac{x}{\sqrt{y}}+\dfrac{y}{\sqrt{x}}\)
\(=\dfrac{x^2}{x\sqrt{y}}+\dfrac{y^2}{y\sqrt{x}}\ge\dfrac{\left(x+y\right)^2}{x\sqrt{y}+y\sqrt{x}}=\dfrac{\left(x+y\right)^2}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}\)
\(\ge\dfrac{\left(x+y\right)^2}{\dfrac{x+y}{2}.\left(1.\sqrt{x}+1.\sqrt{y}\right)}\ge\dfrac{\left(x+y\right)^2}{\dfrac{x+y}{2}.\sqrt{\left(1^2+1^2\right)\left(x+y\right)}}=\dfrac{1}{\dfrac{1}{2}\sqrt{2}}=\sqrt{2}\)
"=" khi x = y = 1/2
cho hai số thực x,y thỏa mãn điều kiện x-3\(\sqrt{x+1}=3\sqrt{y+2}-y\).hãy tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức K=x+y
Bài 1:
Cho số thực x. Với \(x\ge1\).Tìm giá trị nhỏ nhất của biểu thức
\(A=\sqrt{x-2\sqrt{x-1}}+5.\sqrt{x+3-4.\sqrt{x-1}}+\sqrt{x+8-6.\sqrt{x-1}}\)
Bài 2:
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức:
\(y=\frac{x^2}{x^2-5x+7}\)
Bài 3:
Cho hai số dương x,y thay đổi nhưng luôn thỏa mãn điều kiện \(\frac{2}{x}+\frac{3}{y}=6\)
Tìm giá trị nhỏ nhất của x+y
Bài 3:
Có:\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)
True?
Bài 2: Thực sự không chắc lắm về cách này
\(y=\frac{x^2}{x^2-5x+7}\Rightarrow x^2\left(y-1\right)-5yx+7y=0\)
Coi pt trên là pt bậc 2 ẩn x, dùng điều kiện có nghiệm của pt bậc 2 ta có \(\Delta=25y^2-28y\left(y-1\right)=28y-3y^2\ge0\Leftrightarrow28y\ge3y^2\)
Xét y âm, chia 2 vế của bất đẳng thức cho y âm ta được \(y\ge\frac{28}{3}\)không thỏa
Xét y dương ta thu được \(y\le\frac{28}{3}\), cái này thì em không không biết có nghiệm x không nhờ mọi người kiểm tra dùm
Vậy Maxy=28/3 còn Miny=0 (cái min thì dễ hà )
cho ba số thực không âm x,y,z thỏa mãn xyz=1 . tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức M=\(\frac{x\sqrt{x}}{x+\sqrt{xy}+y}+\frac{y\sqrt{y}}{y+\sqrt{yz}+z}+\frac{z\sqrt{z}}{z+\sqrt{zx}+x}\)
Theo em bài này chỉ có min thôi nhé!
Rất tự nhiên để khử căn thức thì ta đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)=\left(a;b;c\right)\ge0\)
Khi đó \(M=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\) với abc = \(\sqrt{xyz}=1\) và a,b,c > 0
Dễ thấy \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)
(chuyển vế qua dùng hằng đẳng thức là xong liền hà)
Do đó \(2M=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)
Đến đây thì chứng minh \(\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{1}{3}\left(a+b\right)\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\left(a+b\right)\ge0\)(đúng)
Áp dụng vào ta thu được: \(2M\ge\frac{2}{3}\left(a+b+c\right)\Rightarrow M\ge\frac{1}{3}\left(a+b+c\right)\ge\sqrt[3]{abc}=1\)
Vậy...
P/s: Ko chắc nha!
bạn bui thai hoc sao lại cmt linh tinh vậy :)) bạn ko có học thức à :> mà ý bạn cmt như vậy là sao hả ?
Cho 3 số dương x,y,z. Tìm giá trị nhỏ nhất của biểu thức
\(P=\dfrac{xz}{y^2+yz}+\dfrac{y^2}{xz+yz}+\dfrac{\sqrt{x}+\sqrt{y}}{2\sqrt{x}}\)