Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguoi Ngu
Xem chi tiết
Nhân Thiện Hoàng
10 tháng 2 2018 lúc 21:07

cái gì đấy

nguyễn hương Xuân
Xem chi tiết
Tiến Hoàng Minh
13 tháng 10 2023 lúc 21:14

\(A=1.2.3.4...2019.\left(2020.2021-2020^2\right)=1.2.3.4...2019.2020\)

Vũ Hoàng
Xem chi tiết
Thắng Nguyễn
19 tháng 7 2016 lúc 22:31

Bài 1:

F=(x-1)3-x2(x-3)

=x3-3x2+3x-1-x3-3x2

=(x3-x3)-(3x2-3x2)+3x-1

=3x-1

Bài 2:

a)(x+3)2=(x-2)(x+4)

<=>x2+6x+9=x2+2x-8

<=>4x=-17

<=>x=-17/4

b)(x+4)2=2x2+16

<=>x2+8x+16=2x2+16

<=>8x=x2

<=>8x-x2=0

<=>x(8-x)=0

<=>x=0 hoặc x=8

Hoàng Thị Thu Hà
19 tháng 7 2016 lúc 22:33

Bài 1:

F=(x-1)3-x2(x-3)=x3-3x2+3x-1-x3+3x2=3x-1

Bài 2:

a, <=>(x+3)2-(x-2)(x-4)=0

    <=>x^2+6x+9-x^2-4x+2x+8=0

    <=>4x+17=0

    <=>x=-4,25

 b,<=>(x+4)2-2x2-16=0

    <=>x2+8x+16-2x2-16=0

    <=>8x-x2=0

   <=>x(8-x)=0

   <=>\(\orbr{\begin{cases}x=0\\x=8\end{cases}}\)

Bài 3:(đợi một xíu)

Xem chi tiết
Lê Song Phương
21 tháng 4 2023 lúc 21:03

Biến đổi thừa số tổng quát: \(1+\dfrac{1}{\left(k-1\right)\left(k+1\right)}\) \(=\dfrac{\left(k-1\right)\left(k+1\right)+1}{\left(k-1\right)\left(k+1\right)}\) \(=\dfrac{k^2}{\left(k-1\right)\left(k+1\right)}\).

Do đó \(1+\dfrac{1}{1.3}=\dfrac{2^2}{1.3}\)\(1+\dfrac{1}{2.4}=\dfrac{3^2}{2.4}\)\(1+\dfrac{1}{3.5}=\dfrac{4^2}{3.5}\),..., \(1+\dfrac{1}{2018.2020}=\dfrac{2019^2}{2018.2020}\)\(1+\dfrac{1}{2019.2021}=\dfrac{2020^2}{2019.2021}\). Từ đó suy ra \(\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)...\left(1+\dfrac{1}{2019.2021}\right)\) 

\(=\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.\dfrac{5^2}{4.6}.\dfrac{6^2}{5.7}...\dfrac{2019^2}{2018.2020}.\dfrac{2020^2}{2019.2021}\)

\(=\dfrac{2.2020}{2021}=\dfrac{4040}{2021}\)

Dương Gia Huy
Xem chi tiết
Đinh Đức Anh
10 tháng 1 2022 lúc 20:42

bằng 0 nha bạn

tick cho mình

Lấp La Lấp Lánh
10 tháng 1 2022 lúc 20:43

\(D=\left(1+\dfrac{1}{1.3}\right).\left(1+\dfrac{1}{2.4}\right)...\left(1+\dfrac{1}{2019.2021}\right)=\dfrac{4}{1.3}.\dfrac{9}{2.4}...\dfrac{2019.2021+1}{2019.2021}=\dfrac{2.2}{1.3}.\dfrac{3.3}{2.4}...\dfrac{2020.2020}{2019.2021}=\left(\dfrac{2}{1}.\dfrac{3}{2}...\dfrac{2020}{2019}\right).\left(\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{2020}{2021}\right)=2020.\dfrac{2}{2021}=\dfrac{4040}{2021}\)

Nguyễn Thị Hương
Xem chi tiết
Cô Bé Thiên Thần
Xem chi tiết
ILoveMath
Xem chi tiết
Nguyễn Hoàng Minh
26 tháng 11 2021 lúc 20:20

a.

\(x=9-\dfrac{1}{\sqrt{\dfrac{9-4\sqrt{5}}{4}}}+\dfrac{1}{\sqrt{\dfrac{9+4\sqrt{5}}{4}}}\\ x=9-\dfrac{1}{\dfrac{\sqrt{5}-2}{2}}+\dfrac{1}{\dfrac{\sqrt{5}+2}{2}}\\ x=9-\left(\dfrac{2}{\sqrt{5}-2}-\dfrac{2}{\sqrt{5}+2}\right)=9-8=1\\ \Rightarrow f\left(x\right)=f\left(1\right)=\left(1-1+1\right)^{2016}=1\)

Nguyễn Hoàng Minh
26 tháng 11 2021 lúc 20:32

c.

\(=\sin x\cdot\cos x+\dfrac{\sin^2x}{1+\dfrac{\cos x}{\sin x}}+\dfrac{\cos^2x}{1+\dfrac{\sin x}{\cos x}}\\ =\sin x\cdot\cos x+\dfrac{\sin^2x}{\dfrac{\sin x+\cos x}{\sin x}}+\dfrac{\cos^2x}{\dfrac{\sin x+\cos x}{\cos x}}\\ =\sin x\cdot\cos x+\dfrac{\sin^3x}{\sin x+\cos x}+\dfrac{\cos^3x}{\sin x+\cos x}\\ =\sin x\cdot\cos x+\dfrac{\left(\sin x+\cos x\right)\left(\sin^2x-\sin x\cdot\cos x+\cos^2x\right)}{\sin x+\cos x}\\ =\sin x\cdot\cos x-\sin x\cdot\cos x+\sin^2x+\cos^2x\\ =1\)

Nguyễn Hoàng Minh
26 tháng 11 2021 lúc 20:44

d.

\(\dfrac{2}{a+b\sqrt{5}}-\dfrac{3}{a-b\sqrt{5}}=-9-20\sqrt{5}\\ \Leftrightarrow\dfrac{-a-5b\sqrt{5}}{\left(a+b\sqrt{5}\right)\left(a-b\sqrt{5}\right)}=-9-20\sqrt{5}\\ \Leftrightarrow\dfrac{a+5b\sqrt{5}}{a^2-5b^2}=9+20\sqrt{5}\\ \Leftrightarrow\left(9+20\sqrt{5}\right)\left(a^2-5b^2\right)=a+5b\sqrt{5}\\ \Leftrightarrow9\left(a^2-5b^2\right)+\sqrt{5}\left(20a^2-100b^2\right)-5b\sqrt{5}=a\\ \Leftrightarrow\sqrt{5}\left(20a^2-100b^2-5b\right)=9a^2-45b^2+a\)

Vì \(\sqrt{5}\) vô tỉ nên để \(\sqrt{5}\left(20a^2-100b^2-5b\right)\) nguyên thì

\(\left\{{}\begin{matrix}20a^2-100b^2-5b=0\\9a^2-45b^2+a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}180a^2-900b^2-45b=0\\180a^2-900b^2+20a=0\end{matrix}\right.\\ \Leftrightarrow20a+45b=0\\ \Leftrightarrow4a+9b=0\Leftrightarrow a=-\dfrac{9}{4}b\\ \Leftrightarrow9a^2-45b^2+a=\dfrac{729}{16}b^2-45b^2-\dfrac{9}{4}b=0\\ \Leftrightarrow\dfrac{9}{16}b^2-\dfrac{9}{4}b=0\\ \Leftrightarrow b\left(\dfrac{9}{16}b-\dfrac{9}{4}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}b=0\\b=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=0\\a=9\end{matrix}\right.\)

Với \(\left(a;b\right)=\left(0;0\right)\left(loại\right)\)

Vậy \(\left(a;b\right)=\left(9;4\right)\)

Dương Nguyễn Khánh
Xem chi tiết
fan FA
20 tháng 8 2016 lúc 9:34

b)\(\left(2016.1017+2017.2018\right).\left(1+\frac{1}{2}:\frac{3}{2}-\frac{4}{3}\right)\)

\(\left(2016.2017+2017.2018\right)\left(1+\frac{1}{3}-\frac{4}{3}\right)\)

\(\left(2016.2017+2017.2018\right).\left(\frac{4}{3}-\frac{4}{3}\right)\)

\(\left(2016.2017+2017.2018\right).0\)

\(=0\)

fan FA
20 tháng 8 2016 lúc 9:45

a) \(1001.789+456.128.128-789+912.436\)

\(=\left(1001.789-789\right)+\left(456.2.64.128+912.436\right)\)

\(=789.1000+912.4\left(2048+109\right)\)

\(=789000+912.4.2157\)

\(=8657736\)

fan FA
20 tháng 8 2016 lúc 9:53

c)\(5\frac{9}{10}+\frac{3}{2}-\left(2\frac{1}{3}.4\frac{1}{2}-2.2\frac{1}{3}\right):\frac{7}{4}\)

\(=\frac{59}{10}+\frac{3}{2}-\left(\frac{7}{3}.\frac{9}{2}-2.\frac{7}{3}\right):\frac{7}{4}\)

\(=\frac{59}{10}+\frac{3}{2}-\left[\frac{7}{3}\left(\frac{9}{2}-2\right)\right]:\frac{7}{4}\)

\(=\frac{59}{10}+\frac{3}{2}-\left(\frac{7}{3}.\frac{5}{2}\right):\frac{7}{4}\)

\(=59+\frac{3}{2}-\frac{35}{6}.\frac{4}{7}\)

\(=\frac{59}{10}+\frac{3}{2}-\frac{10}{3}\)

\(=\frac{177+45-100}{30}=\frac{122}{30}=\frac{61}{15}\)