giải pt (x^2+x+1)^2=3(x^4+x^2+1)
Giúp tớ với.
Bài 1 : cho pt : 4x^2 - 25 + k^2 + 4kx = 0
1. Giải pt với k =0
2. Giải pt với k = -3
3. Tìm các giá trị của k để pt nhận nghiệm là 2.
Bài 2 : Tính
1. x + 1/x-1 ( dấu / là phân số nhé ) - x-1/ x+1 = 16/x^2 - 1
2. 12/x^2-4 - x+1/x-2 + x+7/x+2 = 0
3. 12/8+x^3 = 1 + 1/1+2
4. x + 25/2x^2-50 - x+5/x^2-5x = 5-x/2x^2+10
bai 1
1 thay k=0 vao pt ta co 4x^2-25+0^2+4*0*x=0
<=>(2x)^2-5^2=0
<=>(2x+5)*(2x-5)=0
<=>2x+5=0 hoăc 2x-5 =0 tiếp tục giải ý 2 tương tự
Bài 1:
a) Giải PT sau: \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)
b) Giải PT sau: |2x+6|-x=3
a) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
Ta có: \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}+\dfrac{x^2-4}{\left(x-2\right)\left(x+2\right)}\)
Suy ra: \(x^2+3x+2-5x+10=12+x^2-4\)
\(\Leftrightarrow x^2-2x+12-8-x^2=0\)
\(\Leftrightarrow-2x+4=0\)
\(\Leftrightarrow-2x=-4\)
hay x=2(loại)
Vậy: \(S=\varnothing\)
b) Ta có: \(\left|2x+6\right|-x=3\)
\(\Leftrightarrow\left|2x+6\right|=x+3\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+6=x+3\left(x\ge-3\right)\\-2x-6=x+3\left(x< -3\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-x=3-6\\-2x-x=3+6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=-3\left(loại\right)\end{matrix}\right.\)
Vậy: S={-3}
1 ) giải pt căn 10 -x cộng căn x+3 = x bình - 2x +6
2) giải pt căn x+1 cộng căn x+6 trừ căn x-2 = 4
3) cho pt ( x-2) × ( x bình + m x +m -1 ) = 0 . Tìm m để pt có 3 ng pb
4 ) cho pt x × ( x+1) × ( x+2) × ( x+3) = m . Tìm m để pt đã cho có nghiệm
giải pt : 1/(x+1) + 4/(x+4) = 2/(x+2) + 3/(x+3)
Giải pt x+1/x^2+x+1 -x-1/x^2-x+1=3/x(x^4+x^2+1)
\(4) (x - 1)^3 - (3x + 2)(-12) = (x^2 + 1)(x - 2) - x^2\)
Giải pt
Sửa đề: \(\left(x-1\right)^2-\left(3x+2\right)\left(x-12\right)=\left(x^2+1\right)\left(x-2\right)-x^2\)
\(\Leftrightarrow x^3-3x^2+3x-1-\left(3x^2-36x+2x-24\right)=x^3-2x^2+x-2-x^2\)
=>\(x^3-3x^2+3x-1-3x^2+34x+24=x^3-3x^2+x-2\)
=>\(x^3-6x^2+37x+23-x^3+3x^2-x+2=0\)
=>\(-3x^2+36x+25=0\)
=>\(x=\dfrac{18\pm\sqrt{399}}{3}\)
giải pt (x^2+x+1)^2=3(x^4+x^2+1)
giải pt:
1/(x-1)(x-2)+1/(x-2)(x-3)+1/(x-3)(x-4)+1/(x-4)(x-5)+1/(x-5)(x-6)=1/10
\(\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-2\right)\left(x-3\right)}+\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-4\right)\left(x-5\right)}+\dfrac{1}{\left(x-5\right)\left(x-6\right)}=\dfrac{1}{10}\)
\(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{1}{x-2}+\dfrac{1}{x-2}-\dfrac{1}{x-3}+\dfrac{1}{x-3}-....+\dfrac{1}{x-5}-\dfrac{1}{x-6}=\dfrac{1}{10}\)
\(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{1}{x-6}=\dfrac{1}{10}\Leftrightarrow\dfrac{x-6-x+1}{\left(x-1\right)\left(x-6\right)}=\dfrac{1}{10}\)
\(\Leftrightarrow x^2-7x+56=0\Leftrightarrow x^2-2.\dfrac{7}{2}x+\dfrac{49}{4}+\dfrac{175}{4}=\left(x-\dfrac{7}{2}\right)^2+\dfrac{175}{4}>0\)
Vậy phương trình vô nghiệm
ĐKXĐ: \(x\notin\left\{1;2;3;4;5;6\right\}\)
Ta có: \(\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-2\right)\left(x-3\right)}+\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-4\right)\left(x-5\right)}+\dfrac{1}{\left(x-5\right)\left(x-6\right)}=\dfrac{1}{10}\)
\(\Leftrightarrow\dfrac{1}{x-2}-\dfrac{1}{x-1}+\dfrac{1}{x-3}-\dfrac{1}{x-2}+\dfrac{1}{x-4}+\dfrac{1}{x-3}+\dfrac{1}{x-5}-\dfrac{1}{x-4}+\dfrac{1}{x-6}-\dfrac{1}{x-5}=\dfrac{1}{10}\)
\(\Leftrightarrow\dfrac{1}{x-6}-\dfrac{1}{x-1}=\dfrac{1}{10}\)
\(\Leftrightarrow\dfrac{10\left(x-1\right)}{10\left(x-6\right)\left(x-1\right)}-\dfrac{10\left(x-6\right)}{10\left(x-1\right)\left(x-6\right)}=\dfrac{\left(x-1\right)\left(x-6\right)}{10\left(x-1\right)\left(x-6\right)}\)
Suy ra: \(x^2-7x+6=10x-10-10x+60\)
\(\Leftrightarrow x^2-7x+6=50\)
\(\Leftrightarrow x^2-7x-44=0\)
\(\Leftrightarrow x^2-11x+4x-44=0\)
\(\Leftrightarrow x\left(x-11\right)+4\left(x-11\right)=0\)
\(\Leftrightarrow\left(x-11\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-11=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=11\left(nhận\right)\\x=-4\left(nhận\right)\end{matrix}\right.\)
Vậy: S={11;-4}
ĐKXĐ : \(x\notin\left\{1;2;...;6\right\}\)
\(\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-2\right)\left(x-3\right)}+...+\dfrac{1}{\left(x-5\right)\left(x-6\right)}=\dfrac{1}{10}\\ \Leftrightarrow\dfrac{\left(x-1\right)-\left(x-2\right)}{\left(x-1\right)\left(x-2\right)}+\dfrac{\left(x-2\right)-\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}+...+\dfrac{\left(x-5\right)-\left(x-6\right)}{\left(x-5\right)\left(x-6\right)}=\dfrac{1}{10}\\ \Leftrightarrow\dfrac{1}{x-2}-\dfrac{1}{x-1}+\dfrac{1}{x-3}-\dfrac{1}{x-2}+...+\dfrac{1}{x-6}-\dfrac{1}{x-5}=\dfrac{1}{10}\\ \Leftrightarrow\dfrac{1}{x-6}-\dfrac{1}{x-1}=\dfrac{1}{10}\\ \Leftrightarrow\dfrac{5}{\left(x-1\right)\left(x-6\right)}=\dfrac{5}{50}\\ \Rightarrow\left(x-1\right)\left(x-6\right)=50\\ \Leftrightarrow x^2-7x-44=0\\ \Leftrightarrow\left(x-11\right)\left(x+4\right)=0\\ \Leftrightarrow\begin{matrix}x=-4\\x=11\end{matrix}\left(t.m\right)\)
giải pt 8(x+1/x)^2+4(x^2+1/x^2)^2-4(x^2+1/x^2)(x+1/x)^2=(x+4)^2
giúp mik với ak mik ko cần đáp án mik cần cách để giải pt thoi ạ
Bạn cần viết đề bằng công thức toán để được hỗ trợ tốt hơn (biểu tượng $\sum$ góc trái khung soạn thảo). Viết đề thế này khó đọc lắm.