giải phương trình sau:
\(\dfrac{1100}{x}-\dfrac{1100}{x+5}=2\)
\(\dfrac{1100}{x}-\dfrac{1100}{x+5}=2\)
giải pt
Pt <=> \(\dfrac{1}{x}-\dfrac{1}{x+5}=\dfrac{1}{550}\)
<=> \(\dfrac{\left(x+5\right)-x}{x\left(x+5\right)}=\dfrac{1}{550}\)
<=> \(\dfrac{5}{x\left(x+5\right)}=\dfrac{1}{550}\)
<=> \(x^2+5x=2750\)
<=> \(x^2+5x-2750=0\)
<=> \(\left(x^2+5x+2,5^2\right)-52,5^2=0\) (bước này hơi tắt xíu nha :<)
<=> \(\left(x+2,5\right)^2-52,5^2=0\)
<=> \(\left(x+55\right)\left(x-50\right)=0\)
<=> \(\left[{}\begin{matrix}x+55=0\\x-50=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-55\\x=50\end{matrix}\right.\)
Vậy nghiệm của phương trình là x \(\in\left\{-55;50\right\}\)
\(\dfrac{1100}{x}-\dfrac{1100}{x+5}=2\)
\(\dfrac{1100\left(x+5\right)-1100x}{x\left(x+5\right)}=\dfrac{2x\left(x+5\right)}{x\left(x+5\right)}\)
\(1100x+5500-1100x=2x^2+10x\)
\(2x^2+10x-5500=0\)
Δ' \(=5^2-2\left(-5500\right)\)
Δ'\(=11025\)
\(\left[{}\begin{matrix}x=50\\x=-55\end{matrix}\right.\)
\(xy=1100\)
\(y-\dfrac{1100}{x+5}=2\)
giải hpt
\(\left\{{}\begin{matrix}xy=1100\\y-\dfrac{1100}{x+5}=2\end{matrix}\right.< =>\left\{{}\begin{matrix}y=\dfrac{1100}{x}\left(x\ne0\right)\left(1\right)\\\dfrac{1100}{x}-\dfrac{1100}{x+5}=2\left(2\right)\end{matrix}\right.\)
* giải pt(2)\(=>\dfrac{1100x+5500-1100x}{x^2+5x}=2\)
\(=>5500=2x^2+10x=>2x^2+10x-5500=0\)
\(=>\Delta=10^2-4\left(-5500\right)2=44100>0\)
\(=>\left[{}\begin{matrix}x1=\dfrac{-10+\sqrt{44100}}{2.2}=50\left(TM\right)\left(3\right)\\x2=\dfrac{-10-\sqrt{44100}}{2.2}=-55\left(TM\right)\left(4\right)\end{matrix}\right.\)
thế(3)(4) vào(1)\(=>\left[{}\begin{matrix}y=\dfrac{1100}{50}=22\\y=\dfrac{1100}{-55}=-20\end{matrix}\right.\)
vậy...
\(\dfrac{1100}{x}-\dfrac{1100}{x+5}=2\)
đk : x khác 0 ; -5
\(1100x+5500-1100x=2x\left(x+5\right)\)
\(\Leftrightarrow2x^2+10x-5500=0\Leftrightarrow x=50;x=-55\)(tm)
giải các phương trình sau
c, \(\dfrac{x+5}{x-2}=\dfrac{5\left(x+2\right)}{x^2-4}\)
d,\(\dfrac{5}{x-1}=\dfrac{4}{x+2}\)
c: Ta có: \(\dfrac{x+5}{x-2}=\dfrac{5\left(x+2\right)}{x^2-4}\)
\(\Leftrightarrow\dfrac{x+5}{x-2}=\dfrac{5}{x-2}\)
Suy ra: x+5=5
hay \(x=0\left(nhận\right)\)
d: Ta có: \(\dfrac{5}{x-1}=\dfrac{4}{x+2}\)
\(\Leftrightarrow5\left(x+2\right)=4\left(x-1\right)\)
\(\Leftrightarrow x=-14\left(nhận\right)\)
\(\dfrac{x-3}{4}-\dfrac{5-2x}{6}=\dfrac{x}{2}+\dfrac{5}{12}\)
giải các phương trình sau
\(PT.\Rightarrow3x-9-\left(10-4x\right)=6x+5.\)
\(\Leftrightarrow3x-9-10+4x=6x+5.\\ \Leftrightarrow7x-19=6x+5.\\ \Leftrightarrow x=24.\)
\(\dfrac{4x-3}{3x+2}\)-\(\dfrac{x-2}{x}\)=\(\dfrac{x^2-5}{3x^2+2x}\)
Giải phương trình sau:
\(\Leftrightarrow x\left(4x-3\right)-\left(x-2\right)\left(3x+2\right)=x^2-5\)
\(\Leftrightarrow4x^2-3x-3x^2-2x+6x+4=x^2-5\)
\(\Leftrightarrow x^2+x+4=x^2-5\)
=>x+4=-5
hay x=-9(nhận)
Giải phương trình sau:
\(\dfrac{x-1}{2013}\)+\(\dfrac{x-2}{2012}\)+\(\dfrac{x-3}{2011}\)=\(\dfrac{x-4}{2010}\)+\(\dfrac{x-5}{2009}\)+\(\dfrac{x-6}{2008}\)
`(x-1)/2013+(x-2)/2012+(x-3)/2011=(x-4)/2010+(x-5)/2009 +(x-6)/2008`
`<=> ((x-1)/2013-1)+((x-2)/2012-1)+((x-3)/2011-1)=( (x-4)/2010-1)+((x-5)/2009-1)+((x-6)/2008-1)`
`<=> (x-2014)/2013 +(x-2014)/2012+(x-2014)/2011=(x-2014)/2010+(x-2014)/2009+(x-2014)/2008`
`<=> x-2014=0` (Vì `1/2013+1/2012+1/2011-1/2010-1/2009-1/2008 \ne 0`)
`<=>x=2014`
Vậy `S={2014}`.
Giải phương trình sau:
\(\dfrac{x-1}{2013}+\dfrac{x-2}{2012}+\dfrac{x-3}{2011}=\dfrac{x-4}{2010}+\dfrac{x-5}{2009}+\dfrac{x-6}{2008}\)
\(\dfrac{x-1}{2013}-1+\dfrac{x-2}{2012}-1+\dfrac{x-3}{2011}-1=\dfrac{x-4}{2019}-1+\dfrac{x-5}{2010}-1+\dfrac{x-6}{2008}-1\)
\(\Leftrightarrow\dfrac{x-2014}{2013}+\dfrac{x-2014}{2012}+\dfrac{x-2014}{2011}-\dfrac{x-2014}{2010}-\dfrac{x-2014}{2009}-\dfrac{x-2014}{2008}=0\)
\(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2011}-\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{1}{2008}\ne0\right)=0\Leftrightarrow x=2014\)
Giải phương trình sau:
\(\dfrac{x-1}{2013}+\dfrac{x-2}{2012}+\dfrac{x-3}{2011}=\dfrac{x-4}{2010}+\dfrac{x-5}{2009}+\dfrac{x-6}{2008}\)
\(\dfrac{x-1}{2013}+\dfrac{x-2}{2012}+\dfrac{x-3}{2011}=\dfrac{x-4}{2010}+\dfrac{x-5}{2009}+\dfrac{x-6}{2008}\)
\(\Leftrightarrow\left(\dfrac{x-1}{2013}-1\right)+\left(\dfrac{x-2}{2012}-1\right)+\left(\dfrac{x-3}{2011}-1\right)=\left(\dfrac{x-4}{2010}-1\right)+\left(\dfrac{x-5}{2009}-1\right)+\left(\dfrac{x-6}{2008}-1\right)\)
\(\Leftrightarrow\dfrac{x-2014}{2013}+\dfrac{x-2014}{2012}+\dfrac{x-2014}{2011}=\dfrac{x-2014}{2010}+\dfrac{x-2014}{2009}+\dfrac{x-2014}{2008}\)
\(\Leftrightarrow\dfrac{x-2014}{2013}+\dfrac{x-2014}{2012}+\dfrac{x-2014}{2011}-\dfrac{x-2014}{2010}-\dfrac{x-2014}{2009}-\dfrac{x-2014}{2008}=0\)
\(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2011}-\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{1}{2008}\right)=0\)
\(\Leftrightarrow\left(x-2014\right).A=0\)
\(\text{Vì A }\ne0\)
\(\Rightarrow x-2014=0\)
\(\Leftrightarrow x=2014\)
\(\text{Vậy phương trình có tập nghiệm là }S=\left\{2014\right\}\)