Những câu hỏi liên quan
Đào Thu Hoà
Xem chi tiết
alibaba nguyễn
16 tháng 1 2019 lúc 9:05

1/ \(4\left(a^2-ab+b^2\right)⋮3\)

\(\Rightarrow\left(2a-b\right)^2+3b^2⋮3\)

\(\Rightarrow\left(2a-b\right)^2⋮3\)

\(\Rightarrow2a-b⋮3\)

\(\Rightarrow\left(2a-b\right)^2⋮9\)

\(\Rightarrow3b^2⋮9\)

\(\Rightarrow b⋮3\)

\(\Rightarrow a⋮3\)

Bình luận (0)
alibaba nguyễn
16 tháng 1 2019 lúc 13:21

Câu 2 làm hoi dài nên lười

Bình luận (0)
tth_new
1 tháng 9 2019 lúc 19:52

Câu 2 em nghĩ là dùng dồn biến.Câu 2 nếu làm kỹ sẽ rất dài do đó em làm khá tắt, vì vậy không thể tránh khỏi những sai sót khi quy đồng, chị tự kiểm tra lại:P

Giả sử c = min{a,b,c} suy ra \(1\ge3c^2+2c^3\Leftrightarrow0< c\le\frac{1}{2}\)

Chọn t > 0 thỏa mãn: \(2t^2+2t^2c=a^2+b^2+2abc\Leftrightarrow2t^2-\left(a^2+b^2\right)=2c\left(ab-t^2\right)\)

Giả sử \(ab>t^2\Rightarrow2t^2>a^2+b^2\ge2ab\Rightarrow t^2>ab\) (trái với giả us73)

Vậy giả sử sai hay \(ab\le t^2\text{ và }a^2+b^2\ge2t^2\ge2ab\)

Đặt \(f\left(a;b;c\right)=ab+bc+ca-abc\)

Xét hiệu \(d=f\left(a;b;c\right)-f\left(t;t;c\right)\)

\(=\left(ab-t^2\right)+c\left(a+b-2t\right)-c\left(ab-t^2\right)\)

\(=\left(1-c\right)\left(ab-t^2\right)+\frac{c\left(a^2+b^2-2t^2\right)+2c\left(ab-t^2\right)}{a+b+2t}\)

\(=\left(1-c\right)\left(ab-t^2\right)+\frac{\left(2t^2-\left(a^2+b^2\right)\right)-c\left(2t^2-\left(a^2+b^2\right)\right)}{a+b+2t}\)

\(=\frac{\left(1-c\right)\left(2t^2-\left(a^2+b^2\right)\right)}{2c}+\frac{\left(2t^2-\left(a^2+b^2\right)\right)-c\left(2t^2-\left(a^2+b^2\right)\right)}{a+b+2t}\)

\(=\frac{\left(1-c\right)\left(2t^2-\left(a^2+b^2\right)\right)}{2c}+\frac{\left(2t^2-\left(a^2+b^2\right)\right)\left(1-c\right)}{a+b+2t}\)

\(=\left(1-c\right)\left(2t^2-\left(a^2+b^2\right)\right)\left[\frac{1}{2c}+\frac{1}{a+b+2t}\right]\le0\)

Do đó \(f\left(a;b;c\right)\le f\left(t;t;c\right)=t^2+2tc-t^2c\). Ta cần tìm max của f(t;t;c). Mặt khác từ cách chọn t ta thấy:

\(2t^2+c^2+2t^2c=1\Leftrightarrow t=\sqrt{\frac{1-c}{2}}\). Do đó 

\(f\left(t;t;c\right)=\frac{1-c}{2}+2\sqrt{\frac{1-c}{2}}.c-\frac{\left(1-c\right)c}{2}\) với \(0< c\le\frac{1}{2}\)

Dễ thấy f(t;t;c) là hàm đồng biến với \(0< c\le\frac{1}{2}\) nên f(t;t;c) đạt max tại c = 1/2. Khi đó \(f\left(t;t;c\right)=\frac{5}{8}\)

Vậy.....

Bình luận (0)
Nguyễn Phương Thảo
Xem chi tiết
tth_new
24 tháng 2 2020 lúc 10:19

Ta sẽ chứng minh:\(P\le\frac{5}{8}\Leftrightarrow5-8P=5+8abc-8\left(ab+bc+ca\right)\ge0\)

Ta có: \(5-8P=\frac{4ab\left[4\left(a+2bc-b-c\right)^2+\left(2c-1\right)^2\right]+c\left(2b-1\right)^2\left[4\left(a+b-c\right)^2+1\right]}{4ab+c\left(2b-1\right)^2}\ge0\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
Kiệt Nguyễn
30 tháng 5 2020 lúc 13:53

Theo nguyên lý Dirichlet, trong ba số 2a - 1; 2b - 1; 2c - 1 tồn tại ít nhất hai số cùng dấu

Giả sử \(\left(2a-1\right)\left(2b-1\right)\ge0\Leftrightarrow4ab-2a-2b+1\ge0\)

\(\Leftrightarrow4abc\ge2ac+2bc-c\Leftrightarrow2abc\ge ac+bc-\frac{c}{2}\)

 Khi đó thì\(P=ab+bc+ca-2abc+abc\)\(\le ab+bc+ca-ac-bc+\frac{c}{2}+abc=ab+abc+\frac{c}{2}\)

\(\le\frac{a^2+b^2}{2}+abc+\frac{c}{2}=\frac{a^2+b^2+c^2+2abc}{2}-\frac{1}{2}\left(c^2-c+\frac{1}{4}\right)\)\(+\frac{1}{8}\)

\(=\frac{5}{8}-\frac{1}{2}\left(c-\frac{1}{2}\right)^2\le\frac{5}{8}\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
Đào Thế Vũ
31 tháng 5 2020 lúc 10:30

Gitpiptidtpidpuutpuzufzoufzourlwg

Bình luận (0)
 Khách vãng lai đã xóa
Đức Lộc
Xem chi tiết
zZz Cool Kid_new zZz
9 tháng 1 2020 lúc 1:15

\(ab+bc+ca=abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

Đặt \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)

\(\frac{a}{bc\left(a+1\right)}=\frac{\frac{1}{x}}{\frac{1}{y}\cdot\frac{1}{z}\left(\frac{1}{x}+1\right)}=\frac{xyz}{x\left(x+1\right)}=\frac{yz}{x+1}\)

Tươn tự rồi cộng vế theo vế:

\(A=\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{zx}{y+1}\le\frac{\left(x+y\right)^2}{4\left(z+1\right)}+\frac{\left(y+z\right)^2}{4\left(x+1\right)}+\frac{\left(z+x\right)^2}{4\left(y+1\right)}\)

Đặt \(x+y=p;y+z=q;z+x=r\Rightarrow p+q+r=2\)

\(A\le\Sigma\frac{\left(x+y\right)^2}{4\left(z+1\right)}=\Sigma\frac{\left(x+y\right)^2}{4\left[\left(z+y\right)+\left(z+x\right)\right]}=\frac{p^2}{4\left(q+r\right)}+\frac{r^2}{4\left(p+q\right)}+\frac{q^2}{4\left(p+r\right)}\)

Sau khi đổi biến,cô si thì em ra thế này.Ai đó giúp em với :)

Bình luận (0)
 Khách vãng lai đã xóa
Angela jolie
Xem chi tiết
Nguyễn Hiền Minh
5 tháng 3 2020 lúc 21:46

Cho a,b,c là các số thực dương:
Chứng minh rằng: a2+b2+c2+2abc+1≥2(ab+bc+ca)a2+b2+c2+2abc+1≥2(ab+bc+ca)

Ta thấy trong ba số thực dương a;b;ca;b;c luôn tồn tại hai số cùng lớn hơn hay bằng 11 hoặc nhỏ hơn hay bằng 11. Giả sử đó là bbcc.

Khi đó ta có: (b−1)(c−1)≥0⇔bc≥b+c−1(b−1)(c−1)≥0⇔bc≥b+c−1 suy ra 2abc≥2ab+2ac−2a2abc≥2ab+2ac−2a

Do đó, a2+b2+c2+2abc+1≥a2+b2+c2+2ab+2ac−2a+1a2+b2+c2+2abc+1≥a2+b2+c2+2ab+2ac−2a+1

Nên bây giờ ta chỉ cần chứng minh: a2+b2+c2+2ab+2ac−2a+1≥2(ab+bc+ca)a2+b2+c2+2ab+2ac−2a+1≥2(ab+bc+ca)

⇔(a2−2a+1)+(b2+c2−2bc)≥0⇔(a−1)2+(b−c)2≥0⇔(a2−2a+1)+(b2+c2−2bc)≥0⇔(a−1)2+(b−c)2≥0 (đúng)

Bài toán được chứng minh. Dấu bằng xảy ra khi a=b=c=1a=b=c=1.

Bình luận (0)
 Khách vãng lai đã xóa
Mai Tiến Đỗ
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 1 2021 lúc 11:18

\(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

\(\Leftrightarrow abc\ge\left(3-2a\right)\left(3-2b\right)\left(3-2c\right)\)

\(\Leftrightarrow9abc\ge12\left(ab+bc+ca\right)-27\)

\(\Rightarrow abc\ge\dfrac{4}{3}\left(ab+bc+ca\right)-3\)

\(P\ge\dfrac{9}{a\left(b^2+bc+c^2\right)+b\left(c^2+ca+a^2\right)+c\left(a^2+ab+b^2\right)}+\dfrac{abc}{ab+bc+ca}=\dfrac{9}{\left(ab+bc+ca\right)\left(a+b+c\right)}+\dfrac{abc}{ab+bc+ca}\)

\(\Rightarrow P\ge\dfrac{3}{ab+bc+ca}+\dfrac{abc}{ab+bc+ca}=\dfrac{3+abc}{ab+bc+ca}\)

\(\Rightarrow P\ge\dfrac{3+\dfrac{4}{3}\left(ab+bc+ca\right)-3}{ab+bc+ca}=\dfrac{4}{3}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)
Lil Shroud
Xem chi tiết
Trần Minh Hoàng
8 tháng 1 2021 lúc 10:27

Hi vọng là tìm GTLN:

Không mất tính tổng quát, giả sử b, c cùng phía với 1 \(\Rightarrow\left(b-1\right)\left(c-1\right)\ge0\Leftrightarrow bc\ge b+c-1\).

Áp dụng bất đẳng thức AM - GM ta có: 

\(4=a^2+b^2+c^2+abc\ge a^2+2bc+abc\Leftrightarrow2bc+abc\le4-a^2\Leftrightarrow bc\left(a+2\right)\le\left(2-a\right)\left(a+2\right)\Leftrightarrow bc+a\le2\)

\(\Rightarrow a+b+c\le3\).

Áp dụng bất đẳng thức Schwarz ta có:

\(P\le\dfrac{ab}{9}\left(\dfrac{1}{a}+\dfrac{2}{b}\right)+\dfrac{bc}{9}\left(\dfrac{1}{b}+\dfrac{2}{c}\right)+\dfrac{ca}{9}\left(\dfrac{1}{c}+\dfrac{2}{a}\right)=\dfrac{1}{9}.3\left(a+b+c\right)=\dfrac{1}{3}\left(a+b+c\right)\le1\).

Đẳng thức xảy ra khi a = b = c = 1.

Bình luận (1)
t. oanh
23 tháng 5 2021 lúc 21:11

Ta có: P= \(2a+3b+\dfrac{1}{a}+\dfrac{4}{b}\) = \(\text{​​}\text{​​}(\dfrac{1}{a}+a)+\left(\dfrac{4}{b}+b\right)+\left(a+2b\right)\)

Ta thấy: \(\text{​​}\text{​​}(\dfrac{1}{a}+a)\ge2\sqrt{\dfrac{1}{a}\cdot a}=2\)

             \(\text{​​}\text{​​}\left(\dfrac{4}{b}+b\right)\ge2\sqrt{\dfrac{4}{b}\cdot b}=4\)

Do đó: P \(\ge2+4+5=11\)

Vậy: P(min)=11  khi:  \(\left\{{}\begin{matrix}\dfrac{1}{a}=a\\\dfrac{4}{b}=b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right..\)

Bình luận (0)
Angela jolie
Xem chi tiết
Tôi là gió
Xem chi tiết
Phạm Cao Sơn
Xem chi tiết
Phan Nghĩa
1 tháng 9 2020 lúc 15:10

Ta có  \(a+b+c\ge3\sqrt[3]{abc}\Leftrightarrow3\ge3\sqrt[3]{abc}\Leftrightarrow\sqrt[3]{abc}\le1\Leftrightarrow abc\le1\)(bđt AM-GM)

Khi đó \(P=2\left(ab+bc+ca\right)-abc\ge2\left(ab+bc+ca\right)-1\)

\(=2\left(\frac{abc}{c}+\frac{abc}{a}+\frac{abc}{b}\right)-1=2\left[abc\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]-1\)

\(=2abc\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-1=2.\frac{\left(1+1+1\right)^2}{a+b+c}-1=\frac{2.9}{3}-1=5\)

Đẳng thức xảy ra khi và chỉ khi \(a=b=c=1\)

Vậy GTNN của \(P=5\)đạt được khi \(a=b=c=1\)

p/s : nói chung hướng làm là vậy thôi :v chứ minh làm sai chỗ nào rồi ý 

Bình luận (0)
 Khách vãng lai đã xóa