Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Lê Khánh Huyền
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 11 2022 lúc 22:27

1: =>3n-12+17 chia hết cho n-4

=>\(n-4\in\left\{1;-1;17;-17\right\}\)

hay \(n\in\left\{5;3;21;-13\right\}\)

2: =>6n-2+9 chia hết cho 3n-1

=>\(3n-1\in\left\{1;-1;3;-3;9;-9\right\}\)

hay \(n\in\left\{\dfrac{2}{3};0;\dfrac{4}{3};-\dfrac{2}{3};\dfrac{10}{3};-\dfrac{8}{3}\right\}\)

4: =>2n+4-11 chia hết cho n+2

=>\(n+2\in\left\{1;-1;11;-11\right\}\)

hay \(n\in\left\{-1;-3;9;-13\right\}\)

5: =>3n-4 chia hết cho n-3

=>3n-9+5 chia hết cho n-3

=>\(n-3\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{4;2;8;-2\right\}\)

6: =>2n+2-7 chia hết cho n+1

=>\(n+1\in\left\{1;-1;7;-7\right\}\)

hay \(n\in\left\{0;-2;6;-8\right\}\)

Duy An Trần
Xem chi tiết
yl
Xem chi tiết
Trần Nhật Quang
Xem chi tiết
Rimuru tempest
6 tháng 11 2018 lúc 21:51

\(2^2+5^2+8^2+...+\left(3n-1\right)^2=\dfrac{n\left(6n^2+3n-1\right)}{2}\left(1\right)\)

Với n=1

\(VT=4;VP=4\)

(1) đúng với n=1

Giả sử (1) đúng với n=\(k\ge1\)

\(2^2+5^2+8^2+...+\left(3k-1\right)^2=\dfrac{k\left(6k^2+3k-1\right)}{2}\)

Ta cần phải chứng minh (1) đúng với n=k+1

\(\Leftrightarrow2^2+5^2+8^2+...+\left(3k-1\right)^2+\left[3\left(k+1\right)-1\right]^2=\dfrac{\left(k+1\right)\left[6\left(k+1\right)^2+3\left(k+1\right)-1\right]}{2}\)

\(\Leftrightarrow2^2+5^2+8^2+...+\left(3k-1\right)^2+\left(3k+2\right)^2=\dfrac{\left(k+1\right)\left(6k^2+15k+8\right)}{2}\)

\(VT=\dfrac{k\left(6k^2+3k-1\right)}{2}+\left(3k+2\right)^2=\dfrac{6k^3+3k^2-k+18k^2+24k+8}{2}\)

\(=\dfrac{6k^3+21k^2+23k+8}{2}=\dfrac{6k^3+15k^2+8k+6k^2+15k+8}{2}\)

\(=\dfrac{k\left(6k^2+15k+8\right)+\left(6k^2+15k+8\right)}{2}=\dfrac{\left(6k^2+15k+8\right)\left(k+1\right)}{2}\)

\(\Leftrightarrow VT=VP\)

suy ra đpcm

Nguyễn Dương Ngọc Minh
Xem chi tiết
Nhók Bạch Dương
Xem chi tiết
Phạm Nguyễn Tất Đạt
18 tháng 3 2018 lúc 20:13

Đặt \(A=\dfrac{1}{2\cdot5}+\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+...+\dfrac{1}{\left(3n+2\right)\left(3n+5\right)}\)

\(3A=\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{\left(3n+2\right)\left(3n+5\right)}\)

\(3A=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{3n+2}-\dfrac{1}{3n+5}\)

\(3A=\dfrac{1}{2}-\dfrac{1}{3n+5}\)

\(3A=\dfrac{3n+3}{2\left(3n+5\right)}\)

\(A=\dfrac{n+1}{6n+10}\)

mạc trần
Xem chi tiết
Hoàng Thị Ngọc Linh
17 tháng 1 2020 lúc 12:18

a)   Ta có: 

+) \(\frac{10^8}{10^7}\)-1=  108-7-1=10-1=9 (1)

+) \(\frac{10^7}{10^6}\)-1=  107-6-1=10-1=9 (2)

Từ (1) và (2) => \(\frac{10^8}{10^7}\)-1=\(\frac{10^7}{10^6}\)-1

Vậy..

Khách vãng lai đã xóa
Khuất Đăng Mạnh
Xem chi tiết
Lightning Farron
30 tháng 1 2017 lúc 14:50

a)\(VT=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)

\(=\frac{1}{3}\left[\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right]\)

\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\right]\)

\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{3n+2}\right]=\frac{1}{3}\left[\frac{3n+2}{2\left(3n+2\right)}-\frac{2}{2\left(3n+2\right)}\right]\)

\(=\frac{1}{3}\cdot\frac{3n}{6n+4}=\frac{n}{6n+4}=VP\)

Nguyễn Huy Tú
30 tháng 1 2017 lúc 15:28

b) Ta có: \(\frac{5}{3.7}+\frac{5}{7.11}+...+\frac{5}{\left(4n-1\right)\left(4n+3\right)}\)

\(=\frac{5}{4}\left(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{\left(4n-1\right)\left(4n+3\right)}\right)\)

\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{4n-1}-\frac{1}{4n+3}\right)\)

\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{4n+3}\right)\)

\(=\frac{5}{4}\left(\frac{4n+3}{12n+9}-\frac{3}{12n+9}\right)\)

\(=\frac{5}{4}.\frac{4n}{12n+9}\)

\(=\frac{5n}{12n+9}\)

( sai đề )

Khuất Đăng Mạnh
Xem chi tiết
Lightning Farron
27 tháng 1 2017 lúc 13:39

a)\(VT=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)

\(=\frac{1}{3}\left[\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right]\)

\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\)

\(=\frac{1}{2}-\frac{1}{3n+2}=\frac{3n+2}{2\cdot\left(3n+2\right)}-\frac{2}{2\cdot\left(3n+2\right)}\)

\(=\frac{3n+2-2}{6n+4}=\frac{3n}{6n+4}=VP\)

Lightning Farron
27 tháng 1 2017 lúc 13:43

chết phần a quên nhân vs 1/3

Lightning Farron
27 tháng 1 2017 lúc 14:07

b)\(VT=\frac{5}{3\cdot7}+\frac{5}{7\cdot11}+...+\frac{5}{\left(4n-1\right)\left(4n+3\right)}\)

\(=\frac{5}{4}\left[\frac{4}{3\cdot7}+\frac{4}{7\cdot11}+...+\frac{4}{\left(4n-1\right)\left(4n+3\right)}\right]\)

\(=\frac{5}{4}\cdot\left[\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{4n-1}-\frac{1}{4n+3}\right]\)

\(=\frac{5}{4}\cdot\left[\frac{1}{3}-\frac{1}{4n+3}\right]=\frac{5}{4}\cdot\left[\frac{4n+3}{3\left(4n+3\right)}-\frac{3}{3\left(4n+3\right)}\right]\)

\(=\frac{5}{4}\cdot\left[\frac{4n+3-3}{12n+9}\right]\)\(=\frac{5}{4}\cdot\frac{4n}{12n+9}=\frac{5n}{12n+9}\)