(2x-2).(3x-9)<0. Tìm x
Mik là newbie(người mới học) các bạn giúp mik nha. Cảm ơn
giải phương trình
\(\left(2x^2-3x+1\right)\left(2x^2-3x-9\right)=-9\)
Đặt \(2x^2-3x+1=t\Rightarrow2x^2-3x-9=t-10\)
Phương trình trở thành:
\(t\left(t-10\right)=-9\Leftrightarrow t^2-10t+9=0\Rightarrow\left[{}\begin{matrix}t=1\\t=9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x+1=1\\2x^2-3x+1=9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x=0\\2x^2-3x-8=0\end{matrix}\right.\)
\(\Leftrightarrow...\) (bấm máy)
1: 3/x+1 + 2/x+2 = 5x+4/x2+ 3x + 2
2: 2/3x + 1 - 15/6x2-x-1 = 3/2x - 1
3: 9/3x - 1 - 5-x/3x2-4x+1 = 4/x+ 1
4:5/x - 2 + 2/x+4 = 3x/x2 + 2x - 8
5: 4/x+6 + 1/x - 3 = 9/x2 + 3x - 18
6:x/x-3 - 2x2 +9/2x2 - 3x - 9= 1/2x + 3
\(\frac{3}{x+1}+\frac{2}{x+2}=\frac{5x+4}{x^2+3x+2}.\)ĐKXĐ: \(x\ne-1;-2\)
\(\Leftrightarrow\frac{3\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}+\frac{2\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}=\frac{5x+4}{\left(x+1\right)\left(x+2\right)}\)
\(\Leftrightarrow3x+6+2x+2=5x+4\)
\(\Leftrightarrow3x+2x-5x=-6-2+4\)
\(\Leftrightarrow0x=-4\)
=> PT vô nghiệm
\(2;\frac{2}{3x-1}-\frac{15}{6x^2-x-1}=\frac{3}{2x-1}\)
\(\Leftrightarrow\frac{2\left(2x-1\right)}{\left(2x-1\right)\left(3x-1\right)}-\frac{15}{6x^2+3x-2x-1}=\frac{3\left(3x-1\right)}{\left(2x-1\right)\left(3x-1\right)}\)
\(\Leftrightarrow\frac{4x-2-15}{\left(2x-1\right)\left(3x-1\right)}=\frac{9x-3}{\left(2x-1\right)\left(3x-1\right)}\)
\(\Leftrightarrow4x-2-15=9x-3\)
\(\Leftrightarrow4x-9x=2+15-3\)
\(\Leftrightarrow-5x=14\)
.....
mấy cái này mẫu nào dài cậu phân tích ra :
VD : câu 3 : \(3x^2-4x+1\)
\(=3x^2-3x-x+1\)
\(=3x\left(x-1\right)-\left(x-1\right)\)
\(=\left(3x-1\right)\left(x-1\right)\)
r bắt đầu giải PHương trình :)) Mấy câu còn lại tương tự
4; \(\frac{5}{x-2}+\frac{2}{x+4}=\frac{3x}{x^2+2x-8}.\)
\(\Leftrightarrow\frac{5\left(x+4\right)}{\left(x-2\right)\left(x+4\right)}+\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+4\right)}=\frac{3x}{\left(x-2\right)\left(x+4\right)}\)
\(\Leftrightarrow5x+20+2x-4=3x\)
\(\Leftrightarrow4x=-16\Leftrightarrow x=-2\left(TM\right)\)
KL ::
\(5;\frac{4}{x+6}+\frac{1}{x-3}=\frac{9}{x^2+3x-18}\)
\(\Leftrightarrow\frac{4\left(x-3\right)}{\left(x+6\right)\left(x-3\right)}+\frac{x+6}{\left(x-3\right)\left(x+6\right)}=\frac{9}{\left(x-3\right)\left(x+6\right)}\)
\(\Leftrightarrow4x+x=3+9-6\)
\(\Leftrightarrow5x=6\Leftrightarrow x=\frac{6}{5}\)
Bài 2. Tìm x, biết :
a) 3x – 15 = 25 – 5x b) 3x - 17 = 2x – 7 c) 2x – 17 = – (3x – 18)
d) 3x – 14 = 2(x – 9) + 1 e) f) (x – 5)2 = 9
a) 3x – 15 = 25 – 5x
=> 3x + 5x = 25 + 15
=> 8x = 40
=> x = 5
b) 3x - 17 = 2x – 7
=> 3x - 2x = -7 + 17
=> x = 10
c) 2x – 17 = – (3x – 18)
=> 2x - 17 = -3x + 18
=> 2x + 3x = 18 + 17
=> 5x = 35
=> x = 7
d) 3x – 14 = 2(x – 9) + 1
=> 3x - 14 = 2x - 18 + 1
=> 3x - 2x = -18 + 1 + 14
=> x = -3
f) (x – 5)2 = 9
\(\Rightarrow\left[{}\begin{matrix}x-5=3\\x-5=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)
a) Ta có: \(3x-15=25-5x\)
\(\Leftrightarrow3x-15-25+5x=0\)
\(\Leftrightarrow8x-40=0\)
\(\Leftrightarrow8x=40\)
hay x=5
Vậy: x=5
b) Ta có: \(3x-17=2x-7\)
\(\Leftrightarrow3x-17-2x+7=0\)
\(\Leftrightarrow x-10=0\)
hay x=10
Vậy: x=10
c) Ta có: \(2x-17=-\left(3x-18\right)\)
\(\Leftrightarrow2x-17=-3x+18\)
\(\Leftrightarrow2x-17+3x-18=0\)
\(\Leftrightarrow5x-35=0\)
\(\Leftrightarrow5x=35\)
hay x=7
Vậy: x=7
d) Ta có: \(3x-14=2\left(x-9\right)+1\)
\(\Leftrightarrow3x-14=2x-18+1\)
\(\Leftrightarrow3x-14-2x+18-1=0\)
\(\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=-3\)
Vậy: x=-3
f) Ta có: \(\left(x-5\right)^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=3\\x-5=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)
Vậy: \(x\in\left\{2;8\right\}\)
Bài 2. Tìm x, biết :
a) \(3x-15=25-5x\)
\(\Leftrightarrow8x=40\)
\(\Leftrightarrow x=5\)
Vậy x = 5
b) \(3x-17=2x-7\)
\(\Leftrightarrow x=10\)
Vậy x = 10
c) \(2x-17=-\left(3x-18\right)\)
\(\Leftrightarrow2x-17=18-3x\)
\(\Leftrightarrow5x=35\)
\(\Leftrightarrow x=7\)
Vậy x = 7
d) \(3x-14=2\left(x-9\right)+1\)
\(\Leftrightarrow3x-14=2x-18+1\)
\(\Leftrightarrow3x-14=2x-17\)
\(\Leftrightarrow x=-3\)
Vậy x = -3
e) \(\left(x-5\right)^2=9\)
\(\Rightarrow\left[{}\begin{matrix}x-5=3\\x-5=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)
Vậy x = {8; 2}
tìm x : a) (x + 1)^3 + (3 - 2)^3 = 2x^3 + 2(2x - 1)^2 - 9
b) (3x^3+24) : (x+2) + (2x^3−54) : (x^2+3x+9) = 6
a: \(\left(x+1\right)^3+\left(x-2\right)^3=2x^3+2\left(2x-1\right)^2-9\)
\(\Leftrightarrow x^3+3x^2+3x+1+x^3-6x^2+12x-8=2x^3+2\left(4x^2-4x+1\right)-9\)
\(\Leftrightarrow2x^3-3x^2+15x-7=2x^3+8x^2-8x-7\)
\(\Leftrightarrow-11x^2+23x=0\)
\(\Leftrightarrow x\left(-11x+23\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{23}{11}\end{matrix}\right.\)
Tìm x
2x3-50x=0
2x(3x-5)-(5-3x)=0
9(3x-2)=x(2-3x)
(2x-1)2-25=0
25x2-2=0
X2-25=6x-9
(2x-1)2-(2x+5)(2x-5)=18
\(2x\left(x^2-25\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x=0\\x^2-25=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\pm5\end{cases}}\)
\(2x\left(3x-5\right)+\left(3x-5\right)=0\)
\(\left(2x+1\right)\left(3x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+1=0\\3x-5=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{5}{3}\end{cases}}\)
\(9\left(3x-2\right)-x\left(2-3x\right)=0\)
\(9\left(3x-2\right)+x\left(3x-2\right)=0\)
\(\left(9+x\right)\left(3x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}9+x=0\\3x-2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-9\\x=\frac{2}{3}\end{cases}}\)
\(\left(2x-1\right)^2=25\)
\(\Rightarrow\orbr{\begin{cases}2x-1=5\\2x-1=-5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
\(2x^3-50x=0\)
\(\Leftrightarrow2x\left(x^2-25\right)=0\)
\(\Leftrightarrow x^2-25=0\)
\(\Leftrightarrow x^2=25\)
\(\Leftrightarrow x=\pm5\)
a)4/x+2+2/x-2+5x-6/4-x2 ; b)1-3x/2x+3x-2/2x-1+3x-2/2x-4x2 ; c)1/x2+6x+9+1/6x-x2-9+x/x2-9
Rút gọn :
1. (2x-5)(3x+1)-(x-3)^2+(2x+5)^2-(3x+1)^3
2. (2x-1)(2x+1)-3x-2)(2x+3)-(x-1)^3+(2x+3)^3
3. (x-2)(x^2+2x+4)-(3x-2)^3+(3x-4)^2
4. (7x-1)(8x+2)-(2x-7)^2-(x-4)^3-(3x+1)^3
5. (5x-1)(5x+1)-(x+3)(x^2-3x+9)-(2x+4)^2-(3x-4)^2+(2x-5)^3
6. (4x-1)(x+2)-(2x+5)^2-(3x-7)^2+(2x+3)^3=(3x-1)^3
1: \(=6x^2+2x-15x-5-x^2+6x-9+4x^2+20x+25-27x^3-27x^2-9x-1\)
=-27x^3-18x^2+4x+10
2: =4x^2-1-6x^2-9x+4x+6-x^3+3x^2-3x+1+8x^3+36x^2+54x+27
=7x^3+37x^2+46x+33
5:
\(=25x^2-1-x^3-27-4x^2-16x-16-9x^2+24x-16+\left(2x-5\right)^3\)
\(=8x^3-60x^2+150-125+12x^2-x^3+8x-60\)
=7x^3-48x^2+8x-35
Tìm x:
a) 3x.(1 - 2x) + 6x^2 - 7x = 8.(1 - 2x) - 9
b) 2x.(1 + 3x) - 3x.(4 +2x) = 3x - 4
1.CMR:
a) 3.\(\left(x^2+y^2+z^2\right)-\left(x-y\right)^2\) \(-\left(y-z\right)^2-\left(z-x\right)^2=\left(x+y+z\right)^2\)
Tìm x:
1) -3.(1-2x) - 4.(1+3x) = -5x + 5
2) 3.(2x - 5) - 6.(1 - 4x) = -3x + 7
3) (1 - 3x) - 2.(3x - 6) = -4x - 5
4) x.(4x - 3) - 2x.(2x - 1) = 5x - 7
5) 3x.(2x - 1) - 6x.(x + 2) = -3x + 4
6) (1 - 2x).3 - 4.(6x - 1) = 7x - 5
7) 6x - 3.(1 - 4x) - 5.(x + 1) = 2x + 7
8) 6.(1 - 3x) - 3.(2x + 5) = -10x + 7
9) 3x.(1 - 2x) + 6x^2 - 7x = 8.(1 - 2x) - 9
10) 2x.(1 + 3x) - 3x.(4 + 2x) = 3x - 4
* Trả lời:
\(\left(1\right)\) \(-3\left(1-2x\right)-4\left(1+3x\right)=-5x+5\)
\(\Leftrightarrow-3+6x-4-12x=-5x+5\)
\(\Leftrightarrow6x-12x+5x=3+4+5\)
\(\Leftrightarrow x=12\)
\(\left(2\right)\) \(3\left(2x-5\right)-6\left(1-4x\right)=-3x+7\)
\(\Leftrightarrow6x-15-6+24x=-3x+7\)
\(\Leftrightarrow6x+24x+3x=15+6+7\)
\(\Leftrightarrow33x=28\)
\(\Leftrightarrow x=\dfrac{28}{33}\)
\(\left(3\right)\) \(\left(1-3x\right)-2\left(3x-6\right)=-4x-5\)
\(\Leftrightarrow1-3x-6x+12=-4x-5\)
\(\Leftrightarrow-3x-6x+4x=-1-12-5\)
\(\Leftrightarrow-5x=-18\)
\(\Leftrightarrow x=\dfrac{18}{5}\)
\(\left(4\right)\) \(x\left(4x-3\right)-2x\left(2x-1\right)=5x-7\)
\(\Leftrightarrow4x^2-3x-4x^2+2x=5x-7\)
\(\Leftrightarrow-x-5x=-7\)
\(\Leftrightarrow-6x=-7\)
\(\Leftrightarrow x=\dfrac{7}{6}\)
\(\left(5\right)\) \(3x\left(2x-1\right)-6x\left(x+2\right)=-3x+4\)
\(\Leftrightarrow6x^2-3x-6x^2-12x=-3x+4\)
\(\Leftrightarrow-15x+3x=4\)
\(\Leftrightarrow-12x=4\)
\(\Leftrightarrow x=-\dfrac{1}{3}\)
a) |9 + x| = 2x
b) |5x|-3x=2
c) |x+6| -9 =2x
d) |2x-3| + x =21
e) |4 + 2x| = -4x
i) |3x -1| +2 = x
g) |x+15| +1 = 3x
h) | 2x -5| +x =2
a) \(\left|x+9\right|=2x\)
\(\Leftrightarrow\left[{}\begin{matrix}x+9=2x\\x+9=-2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-3\end{matrix}\right.\)
b) \(\left|5x\right|-3x=2\Leftrightarrow\left|5x\right|=3x+2\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=3x+2\\-5x=3x+2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{-1}{4}\end{matrix}\right.\)
c) \(\left|x+6\right|-9=2x\Leftrightarrow\left|x+6\right|=2x+9\)
\(\Leftrightarrow\left[{}\begin{matrix}x+6=2x+9\\-x-6=2x+9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-5\end{matrix}\right.\)
d) \(\left|2x-3\right|+x=21\Leftrightarrow\left|2x-3\right|=21-x\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=21-x\\2x-3=x-21\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-18\end{matrix}\right.\)
e) \(\left|2x+4\right|=-4x\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+4=4x\\2x+4=-4x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{-2}{3}\end{matrix}\right.\)
i) \(\left|3x-1\right|+2=x\Leftrightarrow\left|3x-1\right|=x-2\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=x-2\\3x-1=2-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{2}\\x=\frac{3}{4}\end{matrix}\right.\)
g) \(\left|x+15\right|+1=3x\Leftrightarrow\left|x+15\right|=3x-1\)
\(\Leftrightarrow\left[{}\begin{matrix}x+15=3x-1\\x+15=1-3x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-3,5\end{matrix}\right.\)
h) \(\left|2x-5\right|+x=2\Leftrightarrow\left|2x-5\right|=2-x\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-5=2-x\\2x-5=x-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{7}{3}\\x=3\end{matrix}\right.\)
a) |9+x|=2x
TH1: 9+x=2x
<=> 9=2x-x
<=> x=9
TH2: -9-x=2x
<=> -9=3x
<=> x=-3
b) |5x|-3x=2
TH1: 5x-3x=2
<=> 2x=2
<=> x=1
TH2: -5x-3x=2
<=> -8x=2
<=>x=-4
c) |x+6|-9=2x
TH1: x+6-9=2x
<=> -3=x
TH2: -x-6-9=2x
<=> -15=3x
<=>x=-5
d) |2x-3|+x=21
TH1: 2x-3+x=21
<=> 3x=24
<=> x=8
TH2: -2x+3+x=21
<=> -x=18
<=> x=-18
e,i,g,h tương tự