Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Thị Thu Hiền
Xem chi tiết
Trúc Giang
28 tháng 11 2021 lúc 17:58

Tớ đã trả lời ở câu hỏi mới nhất r nên xin phép được xóa câu hỏi này nhé

Dương Thị Thu Hiền
Xem chi tiết
Trúc Giang
28 tháng 11 2021 lúc 17:41

b) Đặt \(\sqrt{x^2-6x+6}=a\left(a\ge0\right)\)

\(\Rightarrow a^2+3-4a=0\)

=> (a - 3).(a - 1) = 0

=> \(\left[{}\begin{matrix}a=3\\a=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-6x+6}=3\\\sqrt{x^2-6x+6}=1\end{matrix}\right.\)

Bình phương lên giải tiếp nhé!

c) Tương tư câu b nhé

 

Tuấn Tú
Xem chi tiết
YangSu
26 tháng 6 2023 lúc 13:57

Yêu cầu?

Miner Đức
Xem chi tiết
....
Xem chi tiết
Akai Haruma
16 tháng 6 2021 lúc 0:16

1.

ĐKXĐ: $x\geq 1$
PT \(\Leftrightarrow \sqrt{(x-1)-4\sqrt{x-1}+4}+\sqrt{(x-1)+6\sqrt{x-1}+9}=5\)

\(\Leftrightarrow \sqrt{(\sqrt{x-1}-2)^2}+\sqrt{(\sqrt{x-1}+3)^2}=5\)

\(\Leftrightarrow |\sqrt{x-1}-2|+|\sqrt{x-1}+3|=5\)

Ta thấy:

\(\text{VT}=|2-\sqrt{x-1}|+|\sqrt{x-1}+3|\geq |2-\sqrt{x-1}+\sqrt{x-1}+3|=5\)

Dấu "=" xảy ra khi \((2-\sqrt{x-1})(\sqrt{x-1}+3)\geq 0\)

$\Leftrightarrow 2\geq \sqrt{x-1}$

$\Leftrightarrow 5\geq x\geq 1$

Akai Haruma
16 tháng 6 2021 lúc 0:20

2. 

ĐKXĐ: $x\geq \frac{5}{2}$

PT \(\Leftrightarrow \sqrt{2x+4-6\sqrt{2x-5}}+\sqrt{2x-4+2\sqrt{2x-5}}=4\)

\(\Leftrightarrow \sqrt{(2x-5)-6\sqrt{2x-5}+9}+\sqrt{(2x-5)+2\sqrt{2x-5}+1}=4\)

\(\Leftrightarrow \sqrt{(\sqrt{2x-5}-3)^2}+\sqrt{(\sqrt{2x-5}+1)^2}=4\)

\(\Leftrightarrow |\sqrt{2x-5}-3|+|\sqrt{2x-5}+1|=4\)

Thấy rằng:

\(\text{VT}=|3-\sqrt{2x-5}|+|\sqrt{2x-5}+1|\geq |3-\sqrt{2x-5}+\sqrt{2x-5}+1|=4\)

Dấu "=" xảy ra khi $(3-\sqrt{2x-5})(\sqrt{2x-5}+1)\geq 0$

$\Leftrightarrow 3-\sqrt{2x-5}\geq 0$

$\Leftrightarrow 7\geq x\geq \frac{5}{2}$

Vậy........

Akai Haruma
16 tháng 6 2021 lúc 0:20

3. Nhân hai vế với $\sqrt{6}$ và làm tương tự câu 1,2.

Vũ Đức Huy
Xem chi tiết
Hoàng Thảo
Xem chi tiết
$Mr.VôDanh$
8 tháng 7 2019 lúc 8:52

\(\sqrt{6+2\sqrt{5}}-\sqrt{9+4\sqrt{5}}\)

= \(\sqrt{5+2\sqrt{5}+1}-\sqrt{5+4\sqrt{5}+4}\)

= \(\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}+2\right)^2}\)

= \(\sqrt{5}+1-\sqrt{5}-2\)

= \(-1\)

Dragon ball heroes Music
Xem chi tiết
Dragon ball heroes Music
18 tháng 9 2021 lúc 15:01

Mn giúp e với ak

Minh Hiếu
18 tháng 9 2021 lúc 15:06

a) \(\sqrt{x^2-6x+9}\)

\(=\sqrt{\left(x^2-2.x.3+3^2\right)}\)

\(=\sqrt{\left(x-3\right)^2}\) ≥0,∀x

⇒x∈\(R\)

b) \(\sqrt{x^2-2x+1}\)

\(=\sqrt{\left(x^2-2.x.1+1^2\right)}\)

\(=\sqrt{\left(x-1\right)^2}\) ≥0,∀x

⇒x∈\(R\)

Nguyễn Kim Chi
Xem chi tiết
Cô Nàng Song Tử
29 tháng 7 2018 lúc 9:11

1) \(\sqrt{\text{x^2− 20x + 100 }}=10\)

<=> \(\sqrt{\left(x-10\right)^2}=10\)

<=> \(\left|x-10\right|=10\)

=> \(\left[{}\begin{matrix}x-10=10\\x-10=-10\end{matrix}\right.\)=> \(\left[{}\begin{matrix}x=10+10\\x=\left(-10\right)+10\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=20\\x=0\end{matrix}\right.\)

Vậy S = \(\left\{20;0\right\}\)

2) \(\sqrt{x +2\sqrt{x}+1}=6\)

<=> \(\sqrt{\left(\sqrt{x^2}+2.\sqrt{x}.1+1^2\right)}=6\)

<=> \(\sqrt{\left(\sqrt{x}+1\right)^2}=6\)

<=> \(\left|\sqrt{x}+1\right|=6\)

=> \(\left[{}\begin{matrix}\sqrt{x}+1=6\\\sqrt{x}+1=-6\end{matrix}\right.\)=>\(\left[{}\begin{matrix}\sqrt{x}=6-1=5\\\sqrt{x}=\left(-6\right)-1=-7\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=25\\x=-49\left(loai\right)\end{matrix}\right.\)

Vậy S = \(\left\{25\right\}\)

3) \(\sqrt{x^2-6x+9}=\sqrt{4+2\sqrt{3}}\)

<=> \(\sqrt{\left(x-3\right)^2}=\sqrt{\sqrt{3^2}+2.\sqrt{3}.1+1^2}\)

<=> \(\left|x-3\right|=\sqrt{\left(\sqrt{3}+1\right)^2}\)

<=> \(\left|x-3\right|=\sqrt{3}+1\)

=> \(\left[{}\begin{matrix}x-3=\sqrt{3}+1\\x-3=-\left(\sqrt{3}+1\right)\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=\sqrt{3}+4\\x=-\sqrt{3}+2\end{matrix}\right.\)

Vậy S = \(\left\{\sqrt{3}+4;-\sqrt{3}+2\right\}\)

Cô Nàng Song Tử
29 tháng 7 2018 lúc 9:29

4) \(\sqrt{3x+2\sqrt{3x}+1}=5\)

<=> \(\sqrt{\sqrt{3x}^2+2.\sqrt{3x}.1+1^2}=5\)

<=> \(\sqrt{\left(\sqrt{3x}+1\right)^2}=5\)

<=> \(\left|\sqrt{3x}+1\right|=5\)

=> \(\left[{}\begin{matrix}\sqrt{3x}+1=5\\\sqrt{3x}+1=-5\end{matrix}\right.\)=> \(\left[{}\begin{matrix}\sqrt{3x}=5-1=4\\\sqrt{3x}=\left(-5\right)-1=-6\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}3x=16\\3x=-6\left(loai\right)\end{matrix}\right.\)=> x = \(\dfrac{16}{3}\) Vậy S = \(\left\{\dfrac{16}{3}\right\}\)

5) \(\sqrt{x^2+2x\sqrt{3}+3}=\sqrt{4-2\sqrt{3}}\)

<=> \(\sqrt{\left(x-\sqrt{3}\right)^2}=\sqrt{\left(\sqrt{3}-1\right)^2}\)

<=> \(\left|x-\sqrt{3}\right|=\sqrt{3}-1\)

<=> \(\left[{}\begin{matrix}x-\sqrt{3}=\sqrt{3}-1\\x-\sqrt{3}=-\left(\sqrt{3}-1\right)\end{matrix}\right.\)=> \(\left[{}\begin{matrix}x=-1\\x=-2\sqrt{3}+1\end{matrix}\right.\)

Vậy S = \(\left\{-1;-2\sqrt{3}+1\right\}\)

6) \(\sqrt{6x+4\sqrt{6x}+4}=7\)

<=> \(\sqrt{\sqrt{6x}^2+2.\sqrt{6x}.2+2^2}=7\)

<=> \(\sqrt{\left(\sqrt{6}+2\right)^2}=7\)

<=> \(\left|\sqrt{6x}+2\right|=7\)

=> \(\left[{}\begin{matrix}\sqrt{6x}+2=7\\\sqrt{6x}+2=-7\end{matrix}\right.\)=>\(\left[{}\begin{matrix}\sqrt{6x}=7-2=5\\\sqrt{6x}=\left(-7\right)-2=-9\left(loai\right)\end{matrix}\right.\)

=> \(\sqrt{6x}=5=>6x=25=>x=\dfrac{25}{6}\)

Cô Nàng Song Tử
29 tháng 7 2018 lúc 9:46

7) \(\sqrt{2x^2-2x\sqrt{6}+3}-\sqrt{5-\sqrt{24}}=0\)

<=> \(\sqrt{2x^2-2x\sqrt{6}+3}=\sqrt{5-\sqrt{24}}\)

<=> \(\sqrt{\left(x\sqrt{2}\right)^2-2x\sqrt{2}.\sqrt{3}+\sqrt{3}^2}=\sqrt{5-\sqrt{4}.\sqrt{6}}\)

<=> \(\sqrt{\left(x\sqrt{2}-\sqrt{3}\right)^2}=\sqrt{\sqrt{3}^2-2\sqrt{3}.\sqrt{2}+\sqrt{2}^2}\)

<=> \(\left|x\sqrt{2}-\sqrt{3}\right|=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)

<=> \(\left|x\sqrt{2}-\sqrt{3}\right|=\sqrt{3}-\sqrt{2}\)

=> \(\left[{}\begin{matrix}x\sqrt{2}-\sqrt{3}=\sqrt{3}-\sqrt{2}\\x\sqrt{2}-\sqrt{3}=-\left(\sqrt{3}-\sqrt{2}\right)\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x\sqrt{2}=2\sqrt{3}-\sqrt{2}\\x\sqrt{2}=\sqrt{2}\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{2\sqrt{3}-\sqrt{2}}{\sqrt{2}}\\1\end{matrix}\right.\)

Vậy S = \(\left\{\dfrac{2\sqrt{3}-\sqrt{2}}{\sqrt{2}};1\right\}\)

8) \(\sqrt{3-2\sqrt{2}}-\sqrt{x^2-2x\sqrt{2}+2}=0\)

<=> \(\sqrt{\sqrt{2}^2-2.\sqrt{1}.\sqrt{2}+\sqrt{1}^2}=\sqrt{x^2-2x\sqrt{2}+2}\)

<=> \(\sqrt{\left(\sqrt{2}-1\right)^2}=\sqrt{\left(x-\sqrt{2}\right)^2}\)

<=> \(\sqrt{2}-1=\left|x-\sqrt{2}\right|\)

=> \(\left[{}\begin{matrix}x-\sqrt{2}=\sqrt{2}-1\\x-\sqrt{2}=-\left(\sqrt{2}-1\right)\end{matrix}\right.=>\left[{}\begin{matrix}x+1=2\sqrt{2}\\x-\sqrt{2}=-\sqrt{2}+1\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=2\sqrt{2}-1\\x=1\end{matrix}\right.\) Vậy S = \(\left\{2\sqrt{2}-1;1\right\}\)