1Tìm x
a.23x+1=128
b.(7x-11)3=25+52+200
c.(2x+1)+(2x+2)+(2x+3)+...+(2x+101)=5757
TÌM x
[2x+1]+[2x+2]+[2x+3]+......+[2x+101]=5757
\(\Leftrightarrow2x+1+2x+2+2x+3+....+2x+101=5757\)
\(\Leftrightarrow2x.101+\left[1+2+3+....+101\right]=5757\)
\(\Leftrightarrow202x+\frac{\left[101+1\right]101}{2}=5757\)
\(\Leftrightarrow202x+5151=5757\)
\(\Leftrightarrow202x=606\)
\(\Leftrightarrow x=3\)
Vậy x=3
(2x+1)+(2x+2)+(2x+3)+...+(2x+101)=5757
tim so x
Vế trái có 101 số hạng
VT=(2x+1+2x+101).101:2
=(4x+102).101:2
=>(4x+102).101:2=5757
(4x+102).101=5757.2
(4x+102).101=11514
4x+102=11514:101
4x+102=114
4x=114-102
4x=12
x=12:4
x=3
Vậy x thuộc {3}
ve trai co 101 so hang
vt:(2x+1+2x101).101:2
=(4x+102).101:2
a) 2x . 4 = 128
b) (2x + 1 ) 3 = 125
c) 2x - 26 = 6
d) 64 . 4x = 45
e) 27 . 3x = 243
g) 49 . 7x = 2041
a) \(\Rightarrow2^x=32\Rightarrow2^x=2^5\Rightarrow x=5\)
b) \(\Rightarrow\left(2x+1\right)^3=5^3\)
\(\Rightarrow2x+1=5\Rightarrow x=2\)
c) \(\Rightarrow2^x=32\Rightarrow x=5\)
d) \(\Rightarrow4^3.4^x=4^5\Rightarrow4^x=4^2\Rightarrow x=2\)
e) \(\Rightarrow3^3.3^x=3^5\Rightarrow3^x=3^2\Rightarrow x=2\)
f) \(\Rightarrow7^2.7^x=7^4\Rightarrow7^x=7^2\Rightarrow x=2\)
a. 2x . 4 = 128
<=> 2x + 2 = 27
<=> x + 2 = 7
<=> x = 5
b. (2x + 1)3 = 125
<=> (2x + 1)3 - 53 = 0
<=> (2x + 1 - 5)\(\left[\left(2x+1\right)^2+\left(2x+1\right).5+25\right]=0\)
<=> (2x - 4)(4x2 + 4x + 1 + 10x + 5 + 25) = 0
<=> (2x - 4)(4x2 + 14x + 31) = 0
<=> \(\left[{}\begin{matrix}2x-4=0\\4x^2+14x+31=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=2\\VôNghiệm\end{matrix}\right.\)
c. 2x - 26 = 6
<=> 2x = 32
<=> x = 5
d. 64 . 4x = 45
<=> 43 . 4x = 45
<=> 43 + x = 45
<=> 3 + x = 5
<=> x = 2
e. 27 . 3x = 243
<=> 33 . 3x = 35
<=> 33 + x = 35
<=> 3 + x = 5
<=> x = 2
g. 49 . 7x = 2401 (Bn xem lại đề câu này)
<=> 72 . 7x = 74
<=> 72 + x = 74
<=> 2 + x = 4
<=> x = 2
a, 2x.4= 128
=> 2x= 128:4
=>2x= 32
=> 2x=25
=> x=5
\(\left(2x+1\right)^3=125\)
\(\Rightarrow\left(2x+1\right)^3=\left(\pm5\right)^3\)
\(\Rightarrow\left[{}\begin{matrix}2x+1=5\\2x+1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=4\\2x=-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
c, 2x - 26 = 6
=> 2x = 32
=> 2x= 25
=> x=5
d, 64. 4x = 45
=> 43. 4x= 45
=> 3+x=5
=> x=2
e, 27. 3x= 243
=> 33. 3x= 35
=> 3+x=5
=> x=2
Hoctot
Bài 1Tìm x
A; 3 1/3 (3 1/4+2x)=6 2/3
B; x-25%x=6/11 (1/2+3/4-1/3)
C; (4,5-2x)×1 4/7=11/14
D; (-3)^2-|2x+3|=4
a) \(3\frac{1}{3}\left(3\frac{1}{4}+2x\right)=6\frac{2}{3}\)
\(3\frac{1}{3}\times3\frac{1}{4}+2x=6\frac{2}{3}\)
\(10\frac{5}{6}+2x=6\frac{2}{3}\)
\(2\times x=6\frac{2}{3}+10\frac{5}{6}=17,5\)
\(x=17,5\div2=8,75\)
Vậy x = 8,75
b) \(x-25\%x=\frac{6}{11}\left(\frac{1}{2}+\frac{3}{4}-\frac{1}{3}\right)\)
\(x-\frac{25}{100}x=\frac{6}{11}\left(\frac{1}{2}+\frac{3}{4}-\frac{1}{3}\right)\)
\(x-\frac{1}{4}\times x=\frac{6}{11}\times1\frac{7}{12}=\frac{19}{22}\)
\(x\times x=\frac{19}{22}+\frac{1}{4}=\frac{49}{44}\)
\(\Rightarrow2x\left(x\times x\right)=\frac{49}{44}\)
\(x=\frac{49}{44}\div2=\frac{49}{88}\)
Vậy x = \(\frac{49}{88}\)
c) \(\left(4,5-2x\right)\times1\frac{4}{7}=\frac{11}{14}\)
\(4,5-2x\times1\frac{4}{7}=\frac{11}{14}\)
\(-2x\times1\frac{4}{7}=\frac{11}{14}-4,5=-3\frac{5}{7}\)
\(-2\times x=-3\frac{5}{7}\div1\frac{4}{7}=-2\frac{4}{11}\)
\(x=-2\frac{4}{11}\div\left(-2\right)=1\frac{2}{11}\)
Vậy x = \(1\frac{2}{11}\)
d) \(-3^2-|2x+3|=4\)
\(9-|2x+3|=4\)
\(-|2x+3|=4-9=-5\)
\(-|2x|=-5-|3|=-8\)
\(-|x|=-8\div2=-4\)
\(-x=4\Rightarrow x=-4\)
Vậy x = -4 (-x được xem là số đối của x)
a) 2x.4 = 128
b) (2x + 1)3 = 125
c) 2x – 26 = 6
d) 64.4x = 45
e) 27.3x = 243
g) 49.7x = 2401
h) 3x = 81
k) 34.3x = 37
n) 3x + 25 = 26.22 + 2.30
a) \(2^x\cdot4=128\)
\(\Rightarrow2^x\cdot2^2=2^7\)
\(\Rightarrow2^{x+2}=2^7\)
\(\Rightarrow x+2=7\)
\(\Rightarrow x=5\)
b) \(\left(2x+1\right)^3=125\)
\(\Rightarrow\left(2x+1\right)^3=5^3\)
\(\Rightarrow2x+1=5\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=4:2\)
\(\Rightarrow x=2\)
c) \(2x-2^6=6\)
\(\Rightarrow2x-64=6\)
\(\Rightarrow2x=70\)
\(\Rightarrow x=70:2\)
\(\Rightarrow x=35\)
d) \(64\cdot4^x=45\)
\(\Rightarrow4^3\cdot4^x=45\)
\(\Rightarrow4^{x+3}=45\)
Xem lại đề
e) \(27\cdot3^x=243\)
\(\Rightarrow3^3\cdot3^x=3^5\)
\(\Rightarrow3^{x+3}=3^5\)
\(\Rightarrow x+3=5\)
\(\Rightarrow x=2\)
g) \(49\cdot7^x=2401\)
\(\Rightarrow7^2\cdot7^x=7^4\)
\(\Rightarrow7^{x+2}=7^4\)
\(\Rightarrow x+2=4\)
\(\Rightarrow x=2\)
h) \(3^x=81\)
\(\Rightarrow3^x=3^4\)
\(\Rightarrow x=4\)
k) \(3^4\cdot3^x=3^7\)
\(\Rightarrow3^{x+4}=3^7\)
\(\Rightarrow x+4=7\)
\(\Rightarrow x=3\)
n) \(3^x+25=26\cdot2^2+2\cdot3^0\)
\(\Rightarrow3^x+25=104+2\)
\(\Rightarrow3^x+25=106\)
\(\Rightarrow3^x=81\)
\(\Rightarrow3^x=3^4\)
\(x=4\)
`@` `\text {Ans}`
`\downarrow`
`a)`
`2^x*4 = 128`
`=> 2^x = 128 \div 4`
`=> 2^x = 2^7 \div 2^2`
`=> 2^x = 2^5`
`=> x = 5`
Vậy, `x = 5.`
`b)`
\(\left(2x+1\right)^3=125\)
`=> (2x + 1)^3 = 5^3`
`=> 2x + 1 = 5`
`=> 2x = 5-1`
`=> 2x = 4`
`=> x = 4 \div 2`
`=> x = 2`
Vậy, `x = 2`
`c)`
\(2x-2^6=6\)
`=> 2x = 6+2^6`
`=> 2x = 70`
`=> x = 70 \div 2`
`=> x = 35`
Vậy, `x = 35`
`d)`
\(64\cdot4^x=45\) Bạn xem lại đề
`e)`
`27*3^x = 243`
`=> 3^3 * 3^x = 3^5`
`=> 3^(3 + x) = 3^5`
`=> 3 + x = 5`
`=> x = 5 - 3`
`=> x = 2`
Vậy, `x = 2`
`g)`
`49* 7^x = 2401`
`=> 7^2 * 7^x = 7^4`
`=> 7^(2 + x) = 7^4`
`=> 2 + x = 4`
`=> x = 4 - 2`
`=> x = 2`
Vậy, `x = 2`
`h)`
`3^x = 81`
`=> 3^x = 3^4`
`=> x = 4`
Vậy, `x = 4`
`k)`
`3^4 * 3^x = 3^7`
`=> 3^(4 + x) = 3^7`
`=> 4 + x = 7`
`=> x = 7 - 4`
`=> x = 3`
Vậy, `x = 3`
`n)`
`3^x + 25 = 26*2^2 + 2*3^0`
`=> 3^x + 25 = 104 + 2`
`=> 3^x + 25 = 106`
`=> 3^x = 106 - 25`
`=> 3^x = 81`
`=> 3^x = 3^4`
`=> x = 4`
Vậy, `x = 4.`
\(#48Cd\)
1.
a) 2x + 5 = 34 : 32
b) ( 3x - 24 ) . 73 = 2.74
c) [ 3 . ( 42 - x ) + 15 = 23 . 3
d) 126 + ( 132 - x ) = 300
2.
a) 120 - ( x + 55 ) = 60
b) ( 7x - 11)3 = 25 .52 + 200
c) 2x + 2x+4 = 544
3.
a) 10 + 2x = 49 : 47
b) 70 - 5 ( x - 3 ) = 45
c) 4 + 95 : x = 143 : 142 - 23
1)
a) 2x + 5 = 3⁴ : 3²
2x + 5 = 3²
2x + 5 = 9
2x = 9 - 5
2x = 4
x = 4 : 2
x = 2
b) (3x - 24).73 = 2.74
(3x - 24).73 = 148
3x - 24 = 148/73
3x = 148/73 + 24
3x = 1900/73
x = 1900/73 : 3
x = 1900/219
c) [3.(42 - x)] + 15 = 23.3
126 - 3x + 15 = 69
141 - 3x = 69
3x = 141 - 69
3x = 72
x = 72 : 3
x = 24
d) 126 + (132 - x) = 300
132 - x = 300 - 126
132 - x = 174
x = 132 - 174
x = -42
2)
a) 120 - (x + 55) = 60
x + 55 = 120 - 60
x + 155 = 60
x = 60 - 55
x = 5
b) (7x - 11).3 = 25.52 + 200
(7x - 11).3 = 1500
7x - 11 = 1500 : 3
7x - 11 = 500
7x = 500 + 11
7x = 511
x = 511 : 7
x = 73
c) 2x + 2x + 4 = 544
4x = 544 - 4
4x = 540
x = 540 : 4
x = 135
3)
a) 10 + 2x = 49 : 47
10 + 2x = 49/47
2x = 49/47 - 10
2x = -421/47
x = -421/47 : 2
x = -421/94
b) 70 - 5(x - 3) = 45
5(x - 3) = 70 - 45
5(x - 3) = 25
x - 3 = 25 : 5
x - 3 = 5
x = 5 + 3
x = 8
c) 4 + 95 : x = 143 : 142 - 23
4 + 95 : x = -3123/142
95 : x = -3123/142 - 4
95 : x = -3691/142
x = 95 : (-3691/142)
x = -13490/3691
bài 1Tìm x biết
a: (3x-1)^3-2x(2x+1)^2=5x-20x^2 b: (2-x)^3+(2x+x)^3-12x(x+1)=0 c: (x-3)^3+x^2(x+2)=3x^3-7x^2-9 bài 2 : Chứng minh rằng biểu thức sau không phụ thuộc vào biến a: A=(x+2)^3-(x-2)^3-12x^2+25 b: B=(2x-1)^3+2(x+2)^3-10(x-2)*(x+2)-70xphân tích các số sau ra thừa số nguyên tố 48;56;84;105;360
4) |3 - 2x| = x + 2
5) |2x - 1| = 5 - x
6) |- 3x| = x - 2
7) |2 - 3x| = 2x + 1
8) |2x - 1| + |4x ^ 2 - 1| = 0
9) (2x + 5)/(x + 3) + 1 = 4/(x ^ 2 + 2x - 3) - (3x - 1)/(1 - x)
10) (x - 1)/(x + 3) - x/(x - 3) = (7x - 3)/(9 - x ^ 2)
11) 5 + 96/(x ^ 2 - 16) = (2x - 1)/(x + 4) + (3x - 1)/(x - 4)
12) (2x)/(2x - 1) + x/(2x + 1) = 1 + 4/((2x - 1)(2x + 1))
13) (x + 2)/(x - 2) - 1/x = 2/(x ^ 2 - 2x)
14) x/(2x - 6) + x/(2x + 2) = (2x + 4)/(x ^ 2 - 2x - 3)
9) Ta có: \(\dfrac{2x+5}{x+3}+1=\dfrac{4}{x^2+2x-3}-\dfrac{3x-1}{1-x}\)
\(\Leftrightarrow\left(2x+5\right)\left(x-1\right)+x^2+2x-3=4+\left(3x-1\right)\left(x+3\right)\)
\(\Leftrightarrow2x^2-2x+5x-5+x^2+2x-3-4-3x^2-10x+x+3=0\)
\(\Leftrightarrow-4x=9\)
hay \(x=-\dfrac{9}{4}\)
10) Ta có: \(\dfrac{x-1}{x+3}-\dfrac{x}{x-3}=\dfrac{7x-3}{9-x^2}\)
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{3-7x}{\left(x-3\right)\left(x+3\right)}\)
Suy ra: \(x^2-4x+3-x^2-3x-3+7x=0\)
\(\Leftrightarrow0x=0\)(luôn đúng)
Vậy: S={x|\(x\notin\left\{3;-3\right\}\)}
11) Ta có: \(\dfrac{5+9x}{x^2-16}=\dfrac{2x-1}{x+4}+\dfrac{3x-1}{x-4}\)
\(\Leftrightarrow\dfrac{\left(2x-1\right)\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}+\dfrac{\left(3x-1\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}=\dfrac{9x+5}{\left(x-4\right)\left(x+5\right)}\)
Suy ra: \(2x^2-9x+4+3x^2+12x-x-4-9x-5=0\)
\(\Leftrightarrow5x^2-7x=0\)
\(\Leftrightarrow x\left(5x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{7}{5}\end{matrix}\right.\)
12) Ta có: \(\dfrac{2x}{2x-1}+\dfrac{x}{2x+1}=1+\dfrac{4}{\left(2x-1\right)\left(2x+1\right)}\)
\(\Leftrightarrow\dfrac{2x\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)}+\dfrac{x\left(2x-1\right)}{\left(2x+1\right)\left(2x-1\right)}=\dfrac{4x^2-1+4}{\left(2x-1\right)\left(2x+1\right)}\)
Suy ra: \(4x^2+2x+2x^2-x-4x^2-3=0\)
\(\Leftrightarrow2x^2+x-3=0\)
\(\Leftrightarrow2x^2+3x-2x-3=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=1\end{matrix}\right.\)
13) Ta có: \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x^2-2x}\)
\(\Leftrightarrow\dfrac{x\left(x+2\right)}{x\left(x-2\right)}-\dfrac{x-2}{x\left(x-2\right)}=\dfrac{2}{x\left(x-2\right)}\)
Suy ra: \(x^2+2x-x+2-2=0\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=-1\left(nhận\right)\end{matrix}\right.\)
Tim x biet
A, 2x +23x = 625
B, (2^2+4^2) x + 2^4 ×5 ×x =100
C, (3x + 1)^2 = 6^2 + 8^2
D, (7x -11)^3 = 7^2 × 5^2 - 15^2
E, (2x- 1)^4 = 3× (3^2+4^3+2)
a) 2x + 23x = 625
x (2 + 23) = 625
x. 25 = 625
x = 625 : 25
x = 25
b) (2^2+4^2) x +2^4 x 5 * x = 100 (dấu* là dấu nhân vì mik không muốn trùng nhau nên viết vậy)
( 4 + 16 ) x + 2^4 x 5 * x = 100
20 * x + 16 x 5 * x =100
x ( 20 + 16 x 5 ) = 100
x ( 20 + 80 ) = 100
x * 100 =100
x=100 : 100
x= 1
c) ( 3x +1)^2 = 6^2+8^2
(3x +1)^2 = 36 +64
(3x +1)^2 =100
(3x +1)^2 = 10^2
3x + 1 =10
3x=10 - 1=9
x = 9 :3
x = 3
( d và e làm tương tự )
k mik nha!