cho a,b,c \(\supseteq\)0 và a+b+c=1
cm:b+c\(\supseteq\)16abc
cho a;b;c >/0 và a+b+c=1 chứng minh rằng b+c>/16abc
Áp dụng bđt coossi ta dduowcj : \(a+b+c\ge2\sqrt{a\left(b+c\right)}\Rightarrow1\ge4a\left(b+c\right)\Rightarrow b+c\ge4a\left(b+c\right)^2\)
Mà \(\left(b+c\right)^2\ge4bc\Rightarrow b+c\ge16abc\)
Dấu = xảy ra khi a=b+c và b=c và a+b+c=1=>a=1/2;b=c=1/4
\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\supseteq\frac{a+b+c+d}{2}\left(a,b,c,d>0\right),\)
\(\sqrt{a+2}+\sqrt{b+2}+\sqrt{c+2}< 5\left(a,b,c\supseteq0;a+b+c=1\right)\),
\(\sqrt{a+3}+\sqrt{b+3}+\sqrt{c+3}< 6,5\)
\(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+d}+\sqrt{d+a}\subseteq\sqrt{8}\left(a,b,c,d\supseteq0;a+b+c+d=1\right)\)
a) Áp dụng bdt cosi schwars ta có
\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\)
\(\ge\frac{\left(a+b+c+d\right)^2}{a+b+b+c+c+d+d+a}\)
\(=\frac{a+b+c+d}{2}\)
bh mk can mn ho tro jup mk 2 cau cuoi nha
a) Áp dụng bđt Bunhiacopxki ta có :
\(\left[\left(\frac{a}{\sqrt{a+b}}^2\right)+\left(\frac{b}{\sqrt{b+c}}\right)^2+\left(\frac{c}{\sqrt{c+d}}\right)^2+\left(\frac{d}{\sqrt{d+a}}\right)\right]\)\(\times\)\(\left[\left(\sqrt{a+b}\right)^2+\left(\sqrt{b+c}\right)^2+\left(\sqrt{c+d}\right)^2+\left(\sqrt{d+a}\right)^2\right]\)\(\ge\left(a+b+c+d\right)^2\)
\(\Leftrightarrow\left(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\right)\times2\left(a+b+c+d\right)\ge\left(a+b+c+d\right)^2\)
\(\Leftrightarrow\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{a+b+c+d}{2}\)( chia cả 2 vế cho \(2\left(a+b+c+d\right)\))
Dấu "=" xảy ra khi : a = b = c = d
Vậy ...
các bn ơi dấu \(\subseteq;\supseteq\)
là j
hai dấu của bạn hỏi là không là tập hợp con
Cho a,b,c >0 và a+b+c = 1. Chứng minh b+c ≥ 16abc.
\(\left(b+c\right)\left(a+b+c\right)^2=\left(b+c\right)\left(a+\left(b+c\right)\right)^2\ge2\sqrt{bc}.4a\left(b+c\right)\)
\(\ge8\sqrt{bc}.a.2\sqrt{bc}\ge16abc\)
Dấu "=" xảy ra bạn tự kiếm nhé
u trả lời hay nhất: ta có (b+c)^2/4>=bc =>16abc=<16a(b+c)^2/4=4a(b+c) =4a (1-a)^2 =4a (1-a)(1-a) =(4a-4a^2)(1-a)
=(1-a) (1- (2a-1)^2)
Vì (2a-1)^2 >= 0 nên 1- (2a-1)^2 =< 1 suy ra (1-a) (1- (2a-1)^2) =<b+c
Vậy 16abc=< b+c
p/s :kham khảo
Bạn tham khảo thêm cách này nha
Ta có: b + c = (b + c).(a + b + c)^2 (vì a + b + c = 1)
Ta có [ (a + b) + c ]^2 >= 4(a + b)c (vì (x + y)^2 >= 4xy )
<=> (b + c).(a + b + c)^2 >= 4(a + b)^2.c
lại có (a + b)^2 >= 4ab => 4(a + b)^2.c >= 16abc (đpcm)
bạn tự tìm dấu '=' nha
p/s : kham khảo
cho a,b,c > 0 vaf a+b+c=1. CMR b+c≥ 16abc
\(CM:a^3+b^3+abc\supseteq ab\)
Cho a,b,c>=0 a+b+c=1 .Tính Mã P=16abc-b-c và Q=16ab-b-c
\(\left(a+b+c\right)^2\ge4a\left(b+c\right)\Rightarrow4a\left(b+c\right)\le1\)
\(\Rightarrow b+c\ge4a\left(b+c\right)^2\ge4a.4bc=16abc\)
\(\Rightarrow16abc-b-c\le0\)
\(\Rightarrow P_{max}=0\) khi \(\left(a;b;c\right)=\left(1;0;0\right);\left(\frac{1}{2};\frac{1}{4};\frac{1}{4}\right)\)
Ta có \(1=a+b+c\ge a+b\Rightarrow a\le1-b\)
\(Q=16ab-b-c\le16ab-b\le16\left(1-b\right)b-b\)
\(Q\le-16b^2+15b=\frac{225}{64}-16\left(b-\frac{15}{32}\right)^2\le\frac{225}{64}\)
\(Q_{max}=\frac{225}{64}\) khi \(\left(a;b;c\right)=\left(\frac{17}{32};\frac{15}{32};0\right)\)
Cho a+b+c=1. Chứng minh rằng: b+c\(\ge\)16abc ( a,b,c\(\ge\)0)
Áp dụng BĐT cô si cho 2 số không âm
\(b+c\ge2\sqrt{bc}\)
<=>\(\left(b+c\right)^2\ge4bc\) (1)
Áp dụng BĐT cô si cho 2 số không âm
\(a+\left(b+c\right)\ge2\sqrt{a\left(b+c\right)}\)
<=>\(\left[a+\left(b+c\right)\right]^2\ge4a\left(b+c\right)\)
<=>\(1\ge4a\left(b+c\right)\) (2)
nhân (1) với (2) ta đc
\(\left(b+c\right)^2\ge16abc.\left(b+c\right)\)
<=>\(b+c\ge16abc\) (đpcm)
\(1=\left(a+b+c\right)^2\ge4a\left(b+c\right)\)
\(\Rightarrow b+c\ge4a\left(b+c\right)^2\ge4a\cdot4bc=16abc\)
Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}a=b+c\\b=c\\a+b+c=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\frac{1}{2}\\b=c=\frac{1}{4}\end{matrix}\right.\)
1. Cho c^2=ab. CM:b^2-a^2/a^2+c^2=b-a/a
2. Cho a,b,c,d>0. A=a/a+b+c + b/b+c+d
CHÚC CÁC BẠN ĂN TẾT VUI VẺ (giúp mình nha)
xin lỗi nha khó lắm nhưng chúc mừng năm mới