Lời giải:
Áp dụng BĐT Cô-si dạng $(x+y)^2\geq 4xy$ và kết hợp với điều kiện $a+b+c=1$ ta có:
\(b+c=(b+c)(a+b+c)^2\geq (b+c).4a(b+c)=4a(b+c)^2\geq 4a.4bc=16abc\)
Ta có đpcm
Dấu "=" xảy ra khi \((a,b,c)=(\frac{1}{2}; \frac{1}{4}; \frac{1}{4})\), hoặc $(a,b,c)=(1,0,0)$