Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phùng Hồng Hạnh

câu 5: cho a+b+c=0 và a,b,c khác 0 tính giá trị B= a^2 /(a^2 -b^2 -c^2) +b^2/(b^2 -c^2-a^2) + c^2/(c^2 -b^2 -a^2) 
cách trình bày nữa ạ

Đặng Anh Huy 20141919
1 tháng 2 2016 lúc 0:41

Bất đẳng thức, bất phương trình

Đặng Minh Triều
1 tháng 2 2016 lúc 9:34

\(a+b+c=0\Rightarrow-a=b+c\Rightarrow a^2=b^2+c^2+2bc\Rightarrow b^2+c^2=a^2-2bc\)

Tương tự như vậy ta được: \(a^2+c^2=b^2-2ac;a^2+b^2=c^2-2ab\)

Suy ra: \(B=\frac{a^2}{a^2-b^2-c^2}+\frac{b^2}{b^2-c^2-a^2}+\frac{c^2}{c^2-b^2-a^2}\)

\(=\frac{a^2}{a^2-\left(a^2-2bc\right)}+\frac{b^2}{b^2-\left(b^2-2ac\right)}+\frac{c^2}{c^2-\left(c^2-2ab\right)}\)

\(=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{a^3+b^3+c^3}{2abc}=\frac{\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)}{2abc}\)

Ta lại thấy a+b=-c;b+c=-a;c+a=-b (a+b+c=0)

Vậy \(B=\frac{0^3-3.\left(-c\right)\left(-a\right)\left(-b\right)}{2abc}=\frac{3abc}{2abc}=\frac{3}{2}\)


Các câu hỏi tương tự
Lien Le
Xem chi tiết
Vinne
Xem chi tiết
Chanh
Xem chi tiết
SA Na
Xem chi tiết
Quân Trần Hữu
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
nguyễn công huy
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết