Giải phương trình: \(\sin^23x-\cos^24x=\sin^25x-\cos^26x\)
3, giair pt: \(sin^23x-cos^24x=sin^25x-cos^26x\)
dùng công thức hạ bậc để giải các phương trình sau :
a) \(\sin^24x+\sin^23x=\sin^22x+\sin^2x\)
b) \(\cos^2x+\cos^22x+\cos^23x+\cos^24x=2\)
a)\(pt\Leftrightarrow\frac{1-cos8x}{2}+\frac{1-cos6x}{2}=\frac{1-cos4x}{2}+\frac{1-cos2x}{2}\)
\(\Leftrightarrow cos2x+cos4x=cos6x+cos8x\)
\(\Leftrightarrow2cos3x\cdot cosx=2cos7x\cdot cosx\)
\(\Leftrightarrow2cos\left(cos3x-cos7x\right)=0\)
\(\Leftrightarrow2cosx\cdot\left(-2\right)\cdot sin5x\cdot sin\left(-2x\right)=0\)
\(\Leftrightarrow cosx\cdot sin2x\cdot sin5x=0\)
\(\Leftrightarrow sin2x\cdot sin5x=0\)(do sin2x=0 <=>2sinx*cosx=0 gồm th cosx=0 r`)
\(\Leftrightarrow\left[\begin{array}{nghiempt}sin2x=0\\sin5x=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{k\pi}{2}\\x=\frac{k\pi}{5}\end{array}\right.\)\(\left(k\in Z\right)\)
b)\(pt\Leftrightarrow1-cos2x+1-cos4x=1+cos6x+1+cos8x\)
\(\Leftrightarrow cos2x+cos8x+cos4x+cos6x=0\)
\(\Leftrightarrow cos10x\cdot cos6x+cos10x\cdot cos2x=0\)
\(\Leftrightarrow cos10x\left(cos6x+cos2x\right)=0\)
\(\Leftrightarrow cos10x\cdot cos8x\cdot cos4x=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}cos10x=0\\cos8x=0\\cos4x=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{\pi}{20}+\frac{k\pi}{10}\\x=\frac{\pi}{16}+\frac{k\pi}{8}\\x=\frac{\pi}{8}+\frac{k\pi}{4}\end{array}\right.\)
giải phương trình \(\cos^24x+\cos^26x=\sin^212x+\sin^216x+2\) \(\forall x\in\left(0;\pi\right)\)
\(\left\{{}\begin{matrix}cos^24x+cos^26x\le2\\sin^212x+sin^216x\ge0\end{matrix}\right.\)
\(\Rightarrow VT\le VP\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}cos^24x=1\\cos^26x=1\\sin^212x=0\\sin^216x=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}sin4x=0\\sin6x=0\\sin12x=0\\sin16x=0\end{matrix}\right.\)
\(\Leftrightarrow x=\frac{k\pi}{2}\)
giải các pt
a) \(sin^3x.cosx-sinx.cos^3x=\frac{\sqrt{2}}{8}\)
b) \(sin^3x-cos^24x=sin^25x-cos^26x\)
c) \(\left(2sinx-cosx+1\right)\left(1+cosx\right)=sin^2x\)
d) \(sin7x+sin9x=2\left[cos^2\left(\frac{\pi}{4}-x\right)-cos^2\left(\frac{\pi}{4}+2x\right)\right]\)
a/
\(\Leftrightarrow sinx.cosx\left(sin^2x-cos^2x\right)=\frac{\sqrt{2}}{8}\)
\(\Leftrightarrow2sinx.cosx\left(cos^2x-sin^2x\right)=-\frac{\sqrt{2}}{4}\)
\(\Leftrightarrow sin2x.cos2x=-\frac{\sqrt{2}}{4}\)
\(\Leftrightarrow\frac{1}{2}sin4x=-\frac{\sqrt{2}}{4}\)
\(\Leftrightarrow sin4x=-\frac{\sqrt{2}}{2}\)
\(\Rightarrow\left[{}\begin{matrix}4x=-\frac{\pi}{4}+k2\pi\\4x=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{16}+\frac{k\pi}{2}\\x=\frac{5\pi}{16}+\frac{k\pi}{2}\end{matrix}\right.\)
b/
Câu này đề hơi kì quái, bạn coi lại đề được ko? Biến đổi mấy cách vẫn thấy ko ổn
c/
\(\Leftrightarrow\left(2sinx-cosx+1\right)\left(1+cosx\right)=1-cos^2x\)
\(\Leftrightarrow\left(2sinx-cosx+1\right)\left(1+cosx\right)=\left(1-cosx\right)\left(1+cosx\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}1+cosx=0\left(1\right)\\2sinx-cosx+1=1-cosx\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow cosx=-1\Leftrightarrow\pi x=\pi+k2\pi\)
\(\left(2\right)\Leftrightarrow2sinx=0\Rightarrow sinx=0\)
\(\Rightarrow x=k\pi\)
Kết hợp lại ta được \(x=k\pi\)
d/
\(\Leftrightarrow2sin8x.cosx=cos\left(\frac{\pi}{2}-2x\right)+1-1-cos\left(\frac{\pi}{2}+4x\right)\) (hạ bậc vế phải)
\(\Leftrightarrow2sin8x.cosx=sin2x+sin4x\)
\(\Leftrightarrow2sin8x.cosx=2sin3x.cosx\)
\(\Leftrightarrow cosx\left(sin8x-sin3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sin8x=sin3x\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\8x=3x+k2\pi\\8x=\pi-3x+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\frac{k2\pi}{5}\\x=\frac{\pi}{11}+\frac{k2\pi}{11}\end{matrix}\right.\)
\(\sin^2x+sin^23x=\cos^22x+\cos^24x\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{2}cos2x+\frac{1}{2}-\frac{1}{2}cos6x=\frac{1}{2}+\frac{1}{2}cos4x+\frac{1}{2}+\frac{1}{2}cos8x\)
\(\Leftrightarrow cos8x+cos2x+cos6x+cos4x=0\)
\(\Leftrightarrow2cos5x.cos3x+2cos5x.cosx=0\)
\(\Leftrightarrow cos5x\left(cos3x+cosx\right)=0\)
\(\Leftrightarrow2cos5x.cos2x.cosx=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos5x=0\\cos2x=0\\cosx=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{10}+\frac{k\pi}{5}\\x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=\frac{\pi}{2}+k\pi\end{matrix}\right.\)
Giải các phương trình sau:
\(5\sin^22x-6\sin4x-2\cos^2x=0\)
\(2\sin^23x-10\sin6x-\cos^23x=-2\)
\(\sin^2x\left(\tan x+1\right)=3\sin x\left(\cos x-\sin x\right)+3\)
\(6\sin x-2\cos^3x=\frac{5\sin4x.\cos x}{2\cos2x}\)
Giải phương trình lượng giác sau:
\(sin\left(\dfrac{x}{3}-\dfrac{\pi}{4}\right)=cos\left(\dfrac{\pi}{2}-x\right)\)
\(sin^22x=sin^23x\)
a: \(\Leftrightarrow sin\left(\dfrac{x}{3}-\dfrac{pi}{4}\right)=sinx\)
=>x/3-pi/4=x+k2pi hoặc x/3-pi/4=pi-x+k2pi
=>2/3x=-pi/4+k2pi hoặc 4/3x=5/4pi+k2pi
=>x=-3/8pi+k3pi hoặc x=15/16pi+k*3/2pi
b: =>(sin3x-sin2x)(sin3x+sin2x)=0
=>sin3x-sin2x=0 hoặc sin 3x+sin 2x=0
=>sin 3x=sin 2x hoặc sin 3x=sin(-2x)
=>3x=2x+k2pi hoặc 3x=pi-2x+k2pi hoặc 3x=-2x+k2pi hoặc 3x=pi+2x+k2pi
=>x=k2pi hoặc x=pi/5+k2pi/5 hoặc x=k2pi/5 hoặc x=pi+k2pi
Giải các phương trình :
a) \(\cos^2x+\cos^22x-\cos^23x-\cos^24x=0\)
b) \(\cos4x\cos\left(\pi+2x\right)-\sin2x\cos\left(\dfrac{\pi}{2}-4x\right)=\dfrac{\sqrt{2}}{2}\sin4x\)
c) \(\tan\left(120^0+3x\right)-\tan\left(140^0-x\right)=2\sin\left(80^0+2x\right)\)
d) \(\tan^2\dfrac{x}{2}+\sin^2\dfrac{x}{2}\tan\dfrac{x}{2}+\cos^2\dfrac{x}{2}+\cot^2\dfrac{x}{2}+\sin x=4\)
e) \(\dfrac{\sin2t+2\cos^2t-1}{\cot t-\cot3t+\sin3t-\sin t}=\cos t\)
Giải phương trình:
a) \(Sin^22x+Cos^23x=0\)
b) \(Sin\left(x+\frac{\pi}{3}\right)Cos\left(x-\frac{\pi}{6}\right)=1\)
c) \(Cos^2x+Cos^22x+Cos^23x=1\)