Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sách Giáo Khoa
Xem chi tiết
Đinh Đức Hùng
29 tháng 4 2017 lúc 14:17

a ) \(\dfrac{x-y}{x^3+y^3}.Q=\dfrac{x^2-2xy+y^2}{x^2-xy+y^2}\)

\(\Leftrightarrow Q=\dfrac{x^2-2xy+y^2}{x^2-xy+y^2}:\dfrac{x-y}{x^3+y^3}\)

\(\Leftrightarrow Q=\dfrac{\left(x-y\right)^2}{x^2-xy+y^2}\cdot\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{x-y}\)

\(\Rightarrow Q=\left(x-y\right)\left(x+y\right)=x^2-y^2\)

Vậy \(Q=x^2-y^2\)

b ) \(\dfrac{x+y}{x^3-y^3}.Q=\dfrac{3x^2+3xy}{x^2+xy+y^2}\)

\(\Leftrightarrow Q=\dfrac{3x^2+3xy}{x^2+xy+y^2}:\dfrac{x+y}{x^3-y^3}\)

\(\Leftrightarrow Q=\dfrac{3x\left(x+y\right)}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{x+y}\)

\(\Leftrightarrow Q=3x\left(x-y\right)=3x^2-3xy\)

Vậy \(Q=3x^2-3xy\)

Nguyen Thuy Hoa
29 tháng 6 2017 lúc 8:51

Phép chia các phân thức đại số

Vũ Thị Thu Hằng
Xem chi tiết
Kien Nguyen
18 tháng 12 2017 lúc 14:01

Phân thức đại sốPhân thức đại số

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
28 tháng 6 2017 lúc 15:26

Rút gọn phân thức

Đinh Tuấn Việt
Xem chi tiết
ngonhuminh
20 tháng 3 2017 lúc 16:08

\(\left\{{}\begin{matrix}\dfrac{xy}{x^2+y^2}=\dfrac{3}{8}\Rightarrow x^2+y^2=\dfrac{8}{3}xy\\A=\dfrac{\dfrac{8}{3}xy+2xy}{\dfrac{8}{3}xy-2xy}=\dfrac{14}{2}=7\end{matrix}\right.\)

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
29 tháng 6 2017 lúc 9:27

Phép chia các phân thức đại số

quynh nhu nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 11 2022 lúc 23:07

\(=\dfrac{x\left(x+y\right)}{\left(x+y\right)\left(x^2+y^2\right)}\cdot\left(\dfrac{1}{x-y}-\dfrac{2xy}{\left(x-y\right)\left(x^2+y^2\right)}\right)\)

\(=\dfrac{x}{x^2+y^2}\cdot\dfrac{x^2+y^2-2xy}{\left(x-y\right)\left(x^2+y^2\right)}\)

\(=\dfrac{x}{x^2+y^2}\cdot\dfrac{x-y}{x^2+y^2}=\dfrac{x\left(x-y\right)}{\left(x^2+y^2\right)^2}\)

Huong Tran
Xem chi tiết
Đạt Trần Tiến
7 tháng 12 2017 lúc 21:14

a,\(\frac{x^2+y^2-xy}{x^2-y^2}:\frac{x^3+y^3}{x^2+y^2-2xy} =\frac{x^2+y^2-xy}{(x-y)(x+y)}\frac{(x+y)^2}{(x+y) (x^2-xy+y^2)}=\frac{1}{x-y} \)

b,\(\frac{x^3y+xy^3}{x^4y}:(x^2+y^2)=\frac{xy(x^2+y^2)}{x^4y(x^2+y^2)}=\frac{1}{x^3} \)

c,\(\frac{x^2-xy}{y}:\frac{x^2-xy}{xy+y}:\frac{x^2-1}{x^2+y} =\frac{x(x-y)y(x+y)(x^2+y)}{yx(x-y)(x^2-1)} =\frac{(x^2+y)(x+y)}{x^2-1} \)

d,\(\frac{x^2+y}{y}:(\frac{z}{x^2}:\frac{xy}{x^2y})=\frac{x^2+y}{ y}:(\frac{z}{x^2}\frac{x^2y}{xy})=\frac{x^2+y}{y}\frac{z}{x} \)

Kathy Nguyễn
Xem chi tiết
Quang Duy
20 tháng 8 2017 lúc 19:42

a)\(\dfrac{2x^2-10xy}{2xy}+\dfrac{5y-x}{y}+\dfrac{x+2y}{x}\)

\(=\dfrac{2x\left(x-5y\right)}{2xy}+\dfrac{5y-x}{y}+\dfrac{x+2y}{x}\)

\(=\dfrac{x-5y}{y}+\dfrac{5y-x}{y}+\dfrac{x+2y}{x}\)

\(=\dfrac{x\left(x-5y\right)+x\left(5y-x\right)+y\left(x+2y\right)}{xy}\)

\(=\dfrac{x^2-5xy+5xy-x^2+xy+2y^2}{xy}\)

\(=\dfrac{y\left(x+2y\right)}{xy}\)

Nguyễn Nam
24 tháng 11 2017 lúc 12:56

b) \(\dfrac{x+1}{2x-2}+\dfrac{x^2+3}{2-2x^2}\)

\(=\dfrac{x+1}{2x-2}-\dfrac{x^2+3}{2x^2-2}\)

\(=\dfrac{x+1}{2\left(x-1\right)}-\dfrac{x^2+3}{2\left(x^2-1\right)}\)

\(=\dfrac{x+1}{2\left(x-1\right)}-\dfrac{x^2+3}{2\left(x-1\right)\left(x+1\right)}\) MTC: \(2\left(x-1\right)\left(x+1\right)\)

\(=\dfrac{\left(x+1\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}-\dfrac{x^2+3}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{\left(x+1\right)\left(x+1\right)-\left(x^2+3\right)}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{\left(x+1\right)^2-x^2-3}{2\left(x-1\right)\left(x+1\right)}\)

e) \(\dfrac{2x^2-xy}{x-y}+\dfrac{xy+y^2}{y-x}+\dfrac{2y^2-x^2}{x-y}\)

\(=\dfrac{2x^2-xy}{x-y}-\dfrac{xy+y^2}{x-y}+\dfrac{2y^2-x^2}{x-y}\)

\(=\dfrac{\left(2x^2-xy\right)-\left(xy+y^2\right)+\left(2y^2-x^2\right)}{x-y}\)

\(=\dfrac{2x^2-xy-xy-y^2+2y^2-x^2}{x-y}\)

\(=\dfrac{x^2-2xy+y^2}{x-y}\)

\(=\dfrac{\left(x-y\right)^2}{x-y}\)

\(=x-y\)

Annh Phươngg
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 12 2022 lúc 13:58

\(=\left(\dfrac{x\left(x+y\right)}{x^2\left(x+y\right)+y^2\left(x+y\right)}+\dfrac{y}{x^2+y^2}\right):\left(\dfrac{1}{x-y}-\dfrac{2xy}{x^2\left(x-y\right)+y^2\left(x-y\right)}\right)\)

\(=\dfrac{x+y}{x^2+y^2}:\left(\dfrac{1}{x-y}-\dfrac{2xy}{\left(x-y\right)\left(x^2+y^2\right)}\right)\)

\(=\dfrac{x+y}{x^2+y^2}:\dfrac{x^2+y^2-2xy}{\left(x-y\right)\left(x^2+y^2\right)}\)

\(=\dfrac{x+y}{x^2+y^2}\cdot\dfrac{\left(x-y\right)\left(x^2+y^2\right)}{\left(x-y\right)^2}\)

\(=\dfrac{x+y}{x-y}\)