Cho hình thoi ABCD có cạnh là a. Qua C vẽ đường thẳng m cắt tia BA và DA theo thứ tự ở E, F. CMR: \(\dfrac{1}{AE}+\dfrac{1}{AF}\) không đổi với mọi vị trí của đường thẳng m.
Cho hình thoi ABCD có cạnh là a. Qua C vẽ đường thẳng m cắt tia BA và DA theo thứ tự ở E, F. CMR: \(\dfrac{1}{AE}+\dfrac{1}{AF}\) không đổi với mọi vị trí của đường thẳng m.
Cho hình thoi ABCD co cạnh bằng a,một đường thẳng đi qua C cắt các tia đối của tai AB,DA theo thứ tự ở E va F.Chứng minh 1/AE +1/AF=1/a
Cho hình thoi ABCD cạnh a có góc A = 60◦Một đường thẳng bất kì đi qua C cắt tia đối của các tia BA và DA theo thứ tự tại M và N.
1. Chứng minh rằng tích BM · DN có giá trị không đổi.
2. Gọi K là giao điểm của BN và DM. Tính góc BKD
1, Có BC//AD (tính chất hình thoi)
Nên \(\widehat{MBC}=\widehat{A}=\widehat{CDN}\)(cách cặp góc đồng vị)
\(\widehat{BCM}=\widehat{DNC}\)(góc đồng vị)
=> \(\Delta\)MBC đồng dạng với \(\Delta\)CDN (g-g)
=> \(\frac{BM}{DC}=\frac{BC}{DN}\)
=> BM.ND=BC.DC=a2(không đổi)
b) \(\Delta\)BCD đều (Do BC=CD và \(\widehat{C}=60^o\)) nên BD=DC=BC
Ta có: \(\frac{BM}{DC}=\frac{BC}{DN}\left(a\right)\Rightarrow\frac{BM}{BD}=\frac{DB}{DN}\)
Lại có: \(\widehat{MBD}=\widehat{BDN}=120^o\)(kề bù với các góc của tam giác đều ABD)
=> \(\Delta BMD=\Delta DBN\left(c.g.c\right)\)
\(\Rightarrow\widehat{AMD}=\widehat{DBN}\)(2 góc tương ứng)
Xét tam giác BKD và tam giác MBD có: \(\widehat{AMD}=\widehat{DBN}\left(cmt\right)\); \(\widehat{BDM}\)chung
=> Tam giác BKD đồng dạng với tam giác MBD (g-g)
\(\Rightarrow\widehat{BKD}=\widehat{MBD}=120^o\)
Cho hình thoi ABCD ,cạnh a và góc A =120 độ .Qua A vẽ 1 đường thẳng tạo với AB một góc 15 độ . Đường thẳng này cắt cạnh BC ở E và cắt đường thẳng CD ở F. Chứng minh rằng : \(\dfrac{4}{3AB^2}\) =\(\dfrac{1}{AE^2}\)+\(\dfrac{1}{AF^2}\)
Cho hình vuông ABCD. Lấy điểm E trên cạnh BC. Tia AE cắt đường thẳng CD tại G. Trên mặt phẳng bờ là đg thẳng AE chứa tia AD, kẻ AF vuông góc AE và AF= AE.
b. chứng minh \(\dfrac{1}{AD^2}=\dfrac{1}{AE^2}+\dfrac{1}{AG^2} \)
a. chứng minh F, D, C thẳng hàng
c. Biết AD= 13cm, AF : AG= 1:3. Tính độ dài của FG
1. Qua đỉnh A của hình vuông ABCD, cạnh = a. Vẽ 1 đường thẳng cắt BC ở E và cắt DC ở F. CMR: \(\dfrac{1}{AE^2}+\dfrac{1}{AF^2}=\dfrac{1}{a^2}\).
B1)Tứ giác ABCD có AD=BC, các tia DA và CB cắt nhau tại O. Gọi I, K theo thứ tự là trung điểm của AB, CD. Đường thẳng IK cắt các đường thẳng AD, BC theo thứ tự ở E,F. CMR; OEF là tam giác cân
B2) Hình thang ABCD (AB//CD) có AB=a, CD=b, BC= c, AD= d. Các tia phân giác của các góc A và D cắt nhau ở E. Các tia phân giác của các góc B và C cắt nhau ở F. Gọi M, N theo thứ tự là trung điểm của AD, BC.
a)CMR: 4 điểm M, E, F, N thẳng hàng
b) Tính các độ dài MN, MF, FN theo a,b,c,d
c) CMR: a+b= c+d thì E trùng với F
B3) Cho hình thang ABCD (AB//CD) có AB= AD+BC. CMR: các tia phân giác của góc C,D cắt nhau tại một điểm trên cạnh AB.
mk mới lên lớp 8 nên ko bít làm nhìn mún lòi mắt
Vậy Rộp Rộp Rộp, các bạn khác đang hỏi, bạn không trả lời mà đăng như thế lên làm gì ?
Qua đỉnh A của hình vuông ABCD cạnh bằng a, vẽ đường thẳng cắt BC ở E và cắt đường thẳng DC ở F. Chứng minh: \(\dfrac{1}{AE^{2^{ }}}+\dfrac{1}{ÀF^2}=\dfrac{1}{a^2}\)
help me
CHO HÌNH VUÔNG ABCD CÓ ĐỘ DÀI CẠNH LÀ a. MỘT ĐG THẲNG d QUA ĐỈNH C CẮT TIA AB Ở E, CẮT TIA AD Ở F
A) CM \(BE\cdot DF=a^2\) VÀ \(BE:DF=AE^2:AF^2\)
B) CM KHI d QUAY QUANH C SAO CHO TỒN TẠI CÁC ĐIỂM E VÀ F THÌ \(\dfrac{1}{AE}+\dfrac{1}{AF}\) KHÔNG THAY ĐỔI GIÁ TRỊ