1. Qua đỉnh A của hình vuông ABCD, cạnh = a. Vẽ 1 đường thẳng cắt BC ở E và cắt DC ở F. CMR: \(\dfrac{1}{AE^2}+\dfrac{1}{AF^2}=\dfrac{1}{a^2}\).
Cho hình thoi ABCD có cạnh bằng a và \(\widehat{BAD}=150^o\). Lấy điểm E thuộc cạnh BC sao cho \(\widehat{BAE}=30^o\).Tia AE cắt đường thẳng CD tại F. Chứng minh rằng: \(\dfrac{1}{AE^2}+\dfrac{1}{AF^2}=\dfrac{4}{a^2}\)
Cho hình vuông ABCD kẻ đường thẳng qua A cắt BC tại E và đường thẳng CD tại F
Chứng minh
\(\dfrac{1}{AB^2}+\dfrac{1}{AE^2}=\dfrac{1}{AF^2}\)
Cho hình chữ nhật ABCD, AB=2BC. Trên cạnh BC lấy điểm E. Tia AE cắt đường thẳng CD tại F. Chứng minh:
\(\dfrac{1}{AB^2}=\dfrac{1}{AE^2}+\dfrac{1}{4DF^2}\)
Bài 1: cho tam giác abc vuông tại a có anh là đường cao, ab=30cm,hc=32cm. Tinh bh,ac.
Bài 2: cho hình vuông abcd. Kẻ đường thẳng qua a cắt cạnh bc tại e và đường thẳng CD tại f. Chứng minh: 1/ab^2=1/ae^2+1/af^2
Bài 3: cho hình thoi abcd, hai đường chéo cắt nhau tại Ở. Cho biết khoảng cách từ Ở tới mỗi cạnh của hình thôi là h, ac=m,bc=n. Chúng minh rằng: 1/m^2+/n^2=1/4h
Cho hình chữ nhật ABCD có \(AB=\dfrac{3}{2}AD\). Trên cạnh BC lấy điểm E. Tia AE cắt đường thẳng DC tại F. Trên cạnh BC lấy điểm E. Tia AE cắt đường thẳng DC tại F. Trên cạnh AB, CD lần lượt lấy điểm M, N sao cho MN vuông góc với AE. Đường phân giác của góc DAE cắt CD tại P. Chứng minh rằng: \(MN=\dfrac{2}{3}BD+DP\)
cho hình thoi ABCD có A =12o độ tia Ax tạo với tia AB 1 góc BAx =15 độ và cắt cạnh BC tại M cắt đt CD tại N
CMR \(\dfrac{1}{AN^2}+\dfrac{1}{AM^2}=\dfrac{4}{3AB^2}\)
Bài 4.Cho hình thoi ABCD có A= 120 độ, tia Ax tạo với tia AB góc BAx =15 độ, cắt BC, CD lần lượt tại M, N. Chứng minh: 1/AM mũ 2 + 1/AN mũ 2= 1/3AB mũ 2
Cho hình vuông ABCD. Vẽ một đường thẳng bất kì qua A cắt cạnh BC, tia CD lần lượt tại E, F. Chứng minh rằng: 1/AE2 + 1/AF2 = 1/AD2