Tìm giá trị nhỏ nhất của biểu thức:
A=\(x^4-10x^3+37x^2-60x+2046\)
TÌM GIÁ TRỊ NHỎ NHẤT CỦA BIỂU THỨC:
\(A=x^4-10x^3+37x^2-60x+2046\)
CẦN CỨU TRỢ KHẨN CẤP
Biến đổi \(A=\left(x^2-5x\right)^2+12\left(x^2-5x\right)+2046\)
Đặt \(t=x^2-5x\) thì trở thành \(A=t^2+12t+2046=\left(t+6\right)^2+2010\ge2010\)
Vậy minA = 2010 . Bạn tự xét dấu đẳng thức.
tim min biet;A=x4-10x3+37x2-60x+2046
1/Nghiệm của đa thức :x^2-60x+900
2/giá trị nhỏ nhất của biểu thức 4x^2-20x+40
3/giá trị lớn nhất của:-17-(x-3)^2
4/giá trị của x để 3(2x+9)^2-1 đạt giá trị nhỏ nhất
5/ giá trị của biể thức 2x(1-x)+2x(x-1)-50
Cho x2_60x+900=0
Suy ra:x2_2.x.30+302=0
(x-30)2=0
suy ra x-30=0
vậy x=30
a)Tìm giá trị nhỏ nhất của các biểu thức sau:
A = 25x2 - 10x + 11
B = (x - 3)2 + (11 - x)2
C = (x + 1)(x - 2)(x - 3)(x - 6)
b) Tìm giá trị lớn nhất của các các biểu thức sau:
D = 10x - 25x2 - 11
E = 19 - 6x - 9 x2
F = 2x - x2
c) Cho x và y thỏa mãn: x2 + 2xy + 6x + 2y2 + 8 = 0
Tìm giá trị lớn nhất và nhỏ nhất của biểu thức B = x + y + 2024
\(a,\\ A=25x^2-10x+11\\ =\left(5x\right)^2-2.5x.1+1^2+10\\ =\left(5x+1\right)^2+10\ge10\forall x\in R\\ Vậy:min_A=10.khi.5x+1=0\Leftrightarrow x=-\dfrac{1}{5}\\ B=\left(x-3\right)^2+\left(11-x\right)^2\\ =\left(x^2-6x+9\right)+\left(121-22x+x^2\right)\\ =x^2+x^2-6x-22x+9+121=2x^2-28x+130\\ =2\left(x^2-14x+49\right)+32\\ =2\left(x-7\right)^2+32\\ Vì:2\left(x-7\right)^2\ge0\forall x\in R\\ Nên:2\left(x-7\right)^2+32\ge32\forall x\in R\\ Vậy:min_B=32.khi.\left(x-7\right)=0\Leftrightarrow x=7\\Tương.tự.cho.biểu.thức.C\)
b:
\(D=-25x^2+10x-1-10\)
\(=-\left(25x^2-10x+1\right)-10\)
\(=-\left(5x-1\right)^2-10< =-10\)
Dấu = xảy ra khi x=1/5
\(E=-9x^2-6x-1+20\)
\(=-\left(9x^2+6x+1\right)+20\)
\(=-\left(3x+1\right)^2+20< =20\)
Dấu = xảy ra khi x=-1/3
\(F=-x^2+2x-1+1\)
\(=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1< =1\)
Dấu = xảy ra khi x=1
bài 3
tìm giá trị lớn nhất của biểu thức A = 11x - 10x - x^2
tìm giá trị nhỏ nhất của biểu thức B = X^2 + 3X + 7
B=\(x^2+3x+7\)
=>B= \(x^2+2\times\frac{3}{2}x+\frac{9}{4}+\frac{19}{4}\)
=>B=\(\left(x+\frac{3}{2}\right)^2+\frac{19}{4}\)
Vì \(\left(x+\frac{3}{2}\right)^2\ge0\) (Với mọi x)
=>\(\left(x+\frac{3}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\) (Với mọi x )
Dấu "='' xảy ra <=> \(x+\frac{3}{2}=0=>x=-\frac{3}{2}\)
Vậy min B bằng 19/4 <=>x=-3/2
Phần b thì mk làm đc n phần a hình như sai đề pn ạ !!!
tìm giá trị nhỏ nhất của biểu thức sau
2x^2 + 9y^2 - 6xy -6x -12y +2046
\(A=2x^2+9y^2-6xy-6x-12y+2046\)
\(=\left[\left(x^2-6xy+9y^2\right)+\left(4x-12y\right)+4\right]-4+\left(x^2-10x+25\right)-25+2046\)
\(=\left[\left(x-3y\right)^2+4\left(x-3y\right)+4\right]+\left(x-5\right)^2-4-25+2046\)
\(=\left(x-3y+2\right)^2+\left(x-5\right)^2+2017\ge2017\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-3y+2=0\\x-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{7}{3}\\x=5\end{cases}}}\)
Vậy \(A_{min}=2017\) tại \(x=5;y=\frac{7}{3}\)
1- Tìm x để biểu thức 3−x2+2x3−x2+2x có giá trị lớn nhất .
2- Tìm x để biểu thức 3(2x+9)2−13(2x+9)2−1 có giá trị nhỏ nhất
3- Tìm giá trị rút gọn của (x−1)(x+2)−(x+1)x(x−1)(x+2)−(x+1)x
4- 511<a11<711511<a11<711 . Tìm số a thỏa mãn
5- Giá trị nhỏ nhất của M=|x+3|+|x-5|
6- Giá trị lớn nhất của A=|x+13|+64
7- Bậc của đơn thức 12x2y5z312x2y5z3
8- (13)2017×32016×21(13)2017×32016×21
9- Nghiệm của đa thức x2−60x+900x2−60x+900
10- Giá trị rút gọn (2x−4)(x+3)−2x(x+1)
tìm giá trị nhỏ nhất của các biểu thức A=x^2-10x+32
\(A=x^2-10x+32=x^2-10x+25+9=\left(x-5\right)^2+9\)
mà \(\left(x-5\right)^2\ge0\)
\(\Rightarrow\left(x-5\right)^2+9\ge9\)
\(\Rightarrow Min\left(A\right)=9\)
Bài 1: Tìm giá trị nhỏ nhất của các biểu thức sau
1) A = x² + 10x + 25,01
2) B = 3x² – 6x + 4
1) Ta có: \(A=x^2+10x+25,01=\left(x+5\right)^2+0,01\ge0,01\)
Dấu "=" xảy ra khi x = -5
2) Ta có: \(B=3x^2-6x+4=3\left(x-1\right)^2+1\ge1\)
Dấu "=" xảy ra khi x = 1
\(A=x^2+10x+25,01\)
\(=\left(x^2+10x+25\right)+0,01\)
\(=\left(x+5\right)^2+0,01\) ≥ \(0,01\) (vì \(\left(x+5\right)^2\text{≥}0\))
MinA=0,01 ⇔ \(x=-5\)