Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Trung Dũng
Xem chi tiết
Ngọc Thảo
Xem chi tiết
nguyen thi vang
6 tháng 1 2018 lúc 19:21

\(A=\left(\dfrac{-3}{7}.x^3.y^2\right).\left(\dfrac{-7}{9}.y.z^2\right).\left(6.x.y\right)\)

\(A=\left(\dfrac{-3}{7}x^3y^2\right).\left(\dfrac{-7}{9}yz^2\right).6xy\)

\(A=\left(\dfrac{-3}{7}.\dfrac{-7}{9}.6\right).\left(x^3.x\right)\left(y^2.y.y\right).z^2\)

\(A=2x^4y^4z^2\)

\(B=-4.x.y^3\left(-x^2.y\right)^3.\left(-2.x.y.z^3\right)^2\)

\(B=\left[\left(-4\right).\left(-2\right)\right].\left(x.x^6.x^2\right)\left(y^3.y^3.y^2\right)\left(z^6\right)\)

\(B=8x^7y^{y^8}z^6\)

Ác Quỷ Bóng Đêm
Xem chi tiết
Hoàng Lê Bảo Ngọc
10 tháng 8 2016 lúc 6:52

Bài 1 :

a) Ta có : \(\left(1-a\right)\left(1-b\right)\left(1-c\right)=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Áp dụng bđt Cauchy : \(a+b\ge2\sqrt{ab}\) , \(b+c\ge2\sqrt{bc}\) , \(c+a\ge2\sqrt{ca}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\) hay \(\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge8abc\)

 

Minh Hoàng Lê
Xem chi tiết
zZz Cool Kid_new zZz
5 tháng 11 2019 lúc 20:00

\(x^3-y^3-36xy\)

\(=\left(x-y\right)^3+3xy\left(x-y\right)-36xy\)

\(=12^3+36xy-36xy\)

\(=1728\)

Khách vãng lai đã xóa
Lê khắc Tuấn Minh
Xem chi tiết
Đinh Thị Ngọc Thảo
Xem chi tiết
Nguyễn Phạm Quang Khải
6 tháng 1 2018 lúc 19:38

B =-4.x.y3 . (-x2.y)3 . (-2.x.y.z3)2

B=[ (-4) . (-2)] . [x . (-x2)3 . x2].(y3 . y3 . y2) . (z3)2

B=8 . (x.x6.x2) . y8 . z6 (vì lỹ thừa bậc chẵn của một số ko âm)

B=8 . x9 . y8 .z6

Chucs bạn học tốtvui

Lê Ngọc Thái Hà
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 11 2022 lúc 0:03

\(C=\dfrac{\left(b-c+c-a\right)^3+3\left(b-c\right)\left(c-a\right)\left(b-c+c-a\right)+\left(a-b\right)^3}{a^2b-a^2c+b^2c-b^2a+c^2a-c^2b}\)

\(=\dfrac{3\left(b-c\right)\left(c-a\right)\left(b-a\right)}{a^2b-b^2a-a^2c+b^2c+c^2a-c^2b}\)

\(=\dfrac{3\left(b-c\right)\left(c-a\right)\left(b-a\right)}{\left(a-b\right)\cdot ab-c\left(a-b\right)\left(a+b\right)+c^2\left(a-b\right)}\)

\(=\dfrac{3\left(b-c\right)\left(a-c\right)\left(a-b\right)}{\left(a-b\right)\left(ab-ac-bc+c^2\right)}\)

\(=\dfrac{3\left(b-c\right)\left(a-c\right)}{a\left(b-c\right)-c\left(b-c\right)}=3\)

Phạm Mai Linh
Xem chi tiết
Phạm Mai Linh
17 tháng 10 2019 lúc 21:03

\(^{2^{25}}\) là \(2^{25}\) mé các bạn, mình sợ mọi người nhầm

Fudo
17 tháng 10 2019 lúc 21:15

Đợi tí nha bạn Phạm Mai Linh

Fudo
17 tháng 10 2019 lúc 21:36

Câu 1 :                                               Bài giải

Theo đề bài : \(x\text{ : }y\text{ : }z=5\text{ : }4\text{ : }3\text{ }\Rightarrow\text{ }\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=\frac{x+y-z}{5+4-3}=\frac{x+y-z}{6}=\frac{x-y+z}{5-4+3}=\frac{x-y+z}{4}\)

( Áp dụng t/c dãy tỉ số bằng nhau )

\(\Rightarrow\text{ }x+y-z=x-y+z\)

\(\Rightarrow\text{ }y=x-y+z+z-x=2z+y\)

\(A=\frac{x+2\cdot y-3\cdot z}{x-2\cdot y+3\cdot z}=\frac{\left(x+y-z\right)+\left(y-2z\right)}{\left(x-y+z\right)+\left(2z-y\right)}=\frac{\left(x+y-z\right)+\left(2z+y-2z\right)}{\left(x-y+z\right)+\left(2z-2z-y\right)}=\frac{\left(x+y-z\right)+y}{\left(x-y+z\right)+\left(-y\right)}\)

Đến đây chịu ! Nhưng giải gần xong rồi !

Nguyễn Phong
Xem chi tiết
Thanh Ngân
17 tháng 6 2019 lúc 19:34

\(A=\left(a^2+b^2-c^2\right)^2-\left(a^2-b^2+c^2\right)^2-4a^2b^2\)

\(=\left(a^2+b^2-c^2+a^2-b^2+c^2\right)\left(a^2+b^2-c^2-a^2+b^2-c^2\right)-4a^2b^2\)

\(=2a^2.2b^2-4a^2b^2=0\)

\(C=\left(2-6x\right)^2+\left(2-5x\right)^2+2\left(6x-2\right)\left(2-5x\right)\)

\(=\left[\left(2-6x\right)+\left(2-5x\right)\right]^2\)

\(=\left[4-11x\right]^2\)

\(=16-88x+121x^2\)

chúc bn học tốt