Tìm x trong các đẳng thức:
a) |2x - 3| = 5
b) |x - 1| + 3x = 1
Bài 1: Khai triển hằng đẳng thức:
a, ( x - y + 2z )2
b, ( 2x-3 ). ( 2x+3 ) . ( 4x2+9 )
Bài 2: Rút gọn biểu thức:
a, ( 5x+2 ).( 2-5x ) - ( 3x+2 ).( 2x+5 )2
b, ( -2x-3 )2 + 2(2x+1).( 2x+5 ) + ( 2x+5 )2
Bài 1:
a, \(\left(x-y+2z\right)^2=x^2+y^2+4z^2-2xy-4yz+4zx\)
b, \(\left(2x-3\right)\left(2x+3\right)\left(4x^2+9\right)=\left(4x^2-9\right)\left(4x^2+9\right)=16x^4-81\)
rút gọn các biểu thức:
a) (x-2)2-(2x-1)2+(3x-1)(x-5)
b) (x-3)3-(x+3)(x2-3x+9)+(3x-1)(3x+1)
a: Ta có: \(\left(x-2\right)^2-\left(2x-1\right)^2+\left(3x-1\right)\left(x-5\right)\)
\(=x^2-4x+4-4x^2+4x-1+3x^2-15x-x+5\)
\(=-16x+8\)
b: Ta có: \(\left(x-3\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+\left(3x-1\right)\left(3x+1\right)\)
\(=x^3-9x^2+27x-27-x^3-27+9x^2-1\)
=27x-55
Tìm x trong các đẳng thức :
\(a.\left|2x-1\right|=\left|2x+3\right|\)
\(b.\left|x-1\right|+3x=1\)
\(c.\left|5x-3\right|-x=7\)
a) Ta có: \(\left|2x-1\right|=\left|2x+3\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=2x+3\left(loại\right)\\2x-1=-2x-3\end{matrix}\right.\Leftrightarrow2x+2x=-3+1\)
\(\Leftrightarrow4x=-2\)
hay \(x=-\dfrac{1}{2}\)
Tìm điều kiện xác định của các phân thức:
a) \(\dfrac{x-1}{3x^2+6x}\)
b) \(\dfrac{2x+7}{x^3+64}\)
c) \(\dfrac{24-8x^2}{x^2-1}\)
a: ĐKXĐ: \(3x^2+6x\ne0\)
=>\(x^2+2x\ne0\)
=>\(x\cdot\left(x+2\right)\ne0\)
=>\(x\notin\left\{0;-2\right\}\)
b: ĐKXĐ: \(x^3+64\ne0\)
=>\(x^3\ne-64\)
=>\(x\ne-4\)
c: ĐKXĐ: \(x^2-1\ne0\)
=>\(x^2\ne1\)
=>\(x\notin\left\{1;-1\right\}\)
1. Tìm x trong các trường đẳng thức sau:
a) |2x -3|= 5
b) |2x- 1| = | 2x+ 3|
c) | x-1| + 3x= 1
d) |5x -3| -x= 7
|2x-3|=5 suy ra:th1:2x-3=5 2x=5+3 2x=8 x=8:2 x=4 th2:2x-3=-5 2x=-5+3 x=-2 x=-2:2 x=-1
1.
a) | 2x+3 |= 5
=>2x+3=\(\pm\) 5
=>\(\left[\begin{array}{nghiempt}2x+3=5\\2x+3=-5\end{array}\right.\) => \(\left[\begin{array}{nghiempt}2x=2\\2x=-8\end{array}\right.\) => \(\left[\begin{array}{nghiempt}x=1\\x=-4\end{array}\right.\)
Vậy x\(\in\)\(\left\{1;-4\right\}\)
Tìm x trong các đẳng thức:
| 2x-1 | = | 2x+3 |
| x - 1 | + 3x = 1
| 5x-3| - x = 7
Nhanh giúp với! Help me!@@ Cần gấp **
\(|5x-3|-x=7\)
\(|5x-3|=7+x\)
\(\orbr{\begin{cases}5x-3=7+x\\5x-3=-7-x\end{cases}}\)
\(\orbr{\begin{cases}5x-x=7+3\\5x+x=-7+3\end{cases}}\)
\(\orbr{\begin{cases}4x=10\\6x=-4\end{cases}}\)
\(\orbr{\begin{cases}x=2,5\\x=\frac{-2}{3}\end{cases}}\)
Vậy x = 2,5 hoặc x = -2/3
Hi Hi!
Rút gọn biểu thức:
a) (x + 2)(x – 2) – (x + 1)2
b) (2x – 1)(4x2 + 2x + 1) – (2x + 1)( 4x2 – 2x + 1)
3. Tìm x biết:
a) (x + 2)(x2 – 2x + 4) – x(x2 – 2) = 15
b) (x – 1)3 – x(x2 – 3x – 4) = 13
thanks
\(a,=x^2-4-x^2-2x-1=-2x-5\\ b,=8x^3-1-8x^3-1=-2\\ 3,\\ a,\Rightarrow x^3+8-x^3+2x=15\\ \Rightarrow2x=7\Rightarrow x=\dfrac{7}{2}\\ b,\Rightarrow x^3-3x^2+3x-1-x^3+3x^2+4x=13\\ \Rightarrow7x=14\Rightarrow x=2\)
Bài 2:
a) \(=x^2-4-x^2-2x-1=-2x-5\)
b) \(=8x^3-1-8x^3-1=-2\)
Bài 3:
a) \(\Rightarrow x^3+8-x^3+2x=15\)
\(\Rightarrow2x=7\Rightarrow x=\dfrac{7}{2}\)
b) \(\Rightarrow x^3-3x^2+3x-1-x^3+3x^2+4x=13\)
\(\Rightarrow7x=14\Rightarrow x=2\)
Bài 19 trang 7 SBT Toán 8 Tập 1: Tìm giá trị nhỏ nhất của các đa thức:
a. P = x2 – 2x + 5
b. Q = 2x2 – 6x
c. M = x2 + y2 – x + 6y + 10
\(a,P=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)
Dấu \("="\Leftrightarrow x=1\)
\(b,Q=2x^2-6x=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}-\dfrac{9}{4}\right)=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)
Dấu \("="\Leftrightarrow x=\dfrac{3}{2}\)
\(c,M=\left(x^2-x+\dfrac{1}{4}\right)+\left(y^2+6y+9\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)
a: Ta có: \(P=x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi x=1
Bài 1: Rút gọn biểu thức:
a) 2x(3x-5)-6x2 b) (x+3)(1-x)+(x-2)(x+2) c) (3x+1)2-(1+3x)(6x-2)+(3x-1)2
Bài 2: Phân tích đa thức thành nhân tử:
a) 9x2-1 b) 2(x-1)+x2-x c) 3x2+14x-5
Bài 3: Tìm x biết:
a) 2x(x-1)-2x2=4 b) x(x-3)-(x+2)(x-1)=5 c) 4x2-25+(2x+5)2=0
Bài 4: Cho tam giác ABC , có D là trung điểm đoạn thẳng BC , E là trung điểm của AB lấy điểm F đối xứng với điểm D qua E .
a) Chứng minh tứ giác FADB là hình bình hành.
b) Kẻ FG vuông với AB ; DH vuông với AB ; (G;HϵAB). Chứng minh FD=AC;\(\widehat{BFH}\)=\(\widehat{ADG}\).
c) Vẽ điểm Q đối xứng với điểm C qua A , DQ cắt đoạn AB tại điểm I , M là trung điểm AD.
Chứng minh F , M , I thẳng hàng
2:
a: \(9x^2-1=\left(3x\right)^2-1=\left(3x-1\right)\left(3x+1\right)\)
b: \(2\left(x-1\right)+x^2-x\)
\(=2\left(x-1\right)+x\left(x-1\right)\)
\(=\left(x-1\right)\left(x+2\right)\)
c: \(3x^2+14x-5\)
\(=3x^2+15x-x-5\)
\(=3x\left(x+5\right)-\left(x+5\right)=\left(x+5\right)\left(3x-1\right)\)
3:
a: \(2x\left(x-1\right)-2x^2=4\)
=>\(2x^2-2x-2x^2=4\)
=>-2x=4
=>x=-2
b: \(x\left(x-3\right)-\left(x+2\right)\left(x-1\right)=5\)
=>\(x^2-3x-\left(x^2+x-2\right)=5\)
=>\(x^2-3x-x^2-x+2=5\)
=>-4x=3
=>x=-3/4
c: \(4x^2-25+\left(2x+5\right)^2=0\)
=>\(\left(2x-5\right)\left(2x+5\right)+\left(2x+5\right)^2=0\)
=>\(\left(2x+5\right)\left(2x-5+2x+5\right)=0\)
=>4x(2x+5)=0
=>\(\left[{}\begin{matrix}x=0\\x=-\dfrac{5}{2}\end{matrix}\right.\)