Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
cai j vay
Xem chi tiết
Kaya Renger
1 tháng 5 2018 lúc 22:22

Chứng minh Nesbit 4 số rồi áp dụng nhé 

\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}=\frac{a^2}{a\left(b+c\right)}+\frac{b^2}{b\left(c+d\right)}+\frac{c^2}{c\left(d+a\right)}+\frac{d^2}{d\left(a+b\right)}\)  (*)

Theo Cauchy - Schwarz dạng engel , ta có 

(*) \(\ge\frac{\left(a+b+c+d\right)^2}{a\left(b+c\right)+b\left(c+d\right)+c\left(d+a\right)+d\left(a+b\right)}\) 

\(=\frac{2\left(a+c\right)\left(b+d\right)+\left(a+c\right)^2+\left(b+d\right)^2}{\left(a+c\right)\left(b+d\right)+2ac+2bd}\ge\frac{2\left(a+c\right)\left(b+d\right)+4ac+4bd}{\left(a+c\right)\left(b+d\right)+2ac+2bd}=2\)

Đẳng thức xảy ra <=> a = c và b = d 

Áp dụng bất đẳng thức Nesbit cho 4 số ,ta có 

\(\frac{2018}{x+y}+\frac{x}{y+2017}+\frac{y}{2017+2018}+\frac{2017}{x+2018}\ge2\)

Đẳng thức xảy ra <=> y = 2018 , x = 2017 

Athena
Xem chi tiết
The Godlin
Xem chi tiết
Phạm Lan Hương
19 tháng 12 2019 lúc 22:57
https://i.imgur.com/jd3dWdi.jpg
Khách vãng lai đã xóa
Hiền Nguyễn Thị
Xem chi tiết
Nguyễn Bá Hùng
Xem chi tiết
Athena
Xem chi tiết
Đinh Doãn Nam
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 4 2019 lúc 17:18

ĐKXĐ:....

Lấy pt trên cộng 2 lần pt dưới ta được:

\(\frac{x+2019}{x+2018}+\frac{10}{x+2016}=12\)

Số to quá, đặt \(x+2016=a\Rightarrow\frac{a+3}{a+2}+\frac{10}{a}=12\)

\(\Leftrightarrow12a\left(a+2\right)=a\left(a+3\right)+10\left(a+2\right)\)

\(\Leftrightarrow12a^2+24a-a^2-3a-10a-20=0\)

\(\Leftrightarrow11a^2+11a-20=0\)

Nghiệm rất xấu, bạn tự giải tiếp

Vũ Văn Thống
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 12 2022 lúc 22:33

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x-1}{2018}=\dfrac{3-y}{2019}=\dfrac{x-1+3-y}{2018+2019}=1\)

=>x-1=2018 và 3-y=2019

=>x=2019; y=-2016

Đỗ Thế Hưng
Xem chi tiết
Phùng Minh Quân
31 tháng 3 2018 lúc 10:10

Ta có : 

\(\frac{x+y}{2017}=\frac{xy}{2018}=\frac{x-y}{2019}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x+y}{2017}=\frac{x-y}{2019}=\frac{x+y+x-y}{2017+2019}=\frac{x+x}{4036}=\frac{2x}{4036}=\frac{x}{2018}\)

Lại có : 

\(\frac{xy}{2018}=\frac{x}{2018}\)

\(\Leftrightarrow\)\(xy=x\)

\(\Leftrightarrow\)\(y=1\)

Do đó : 

\(\frac{x+y}{2017}=\frac{x-y}{2019}=\frac{x+y-x+y}{2017-2019}=\frac{y+y}{-2}=\frac{2y}{-2}=\frac{y}{-1}=\frac{1}{-1}=-1\) ( áp dụng t/c dãy tỉ số bằng nhau ) 

\(\Rightarrow\)\(\frac{x}{2018}=-1\)

\(\Rightarrow\)\(x=-2018\)

Vậy \(x=-2018\) và \(y=1\)

Chúc bạn học tốt ~