với x >1 tìm giá trị nhỏ nhất của \(f\left(x\right)=2x+\dfrac{1}{\left(x-1\right)^2}\)
Cho hàm số \(f\left(x\right)=\left|x^2-2x+m\right|\) với \(m\in\left[-2018;2018\right]\). Gọi \(M\) là giá trị nhỏ nhất của hàm số \(f\left(x+\dfrac{1}{x}\right)\) trên tập \(R\backslash\left\{0\right\}\). Số giá trị \(m\) nguyên để \(M\ge2\) là bao nhiêu?
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số
a) \(y=f\left(x\right)=\dfrac{4}{\sqrt{5-2\cos^2x\sin^2x}}\)
b)\(y=f\left(x\right)=3\sin^2x+5\cos^2x-4\cos2x-2\)
c)\(y=f\left(x\right)=\sin^6x+\cos^6x+2\forall x\in\left[\dfrac{-\pi}{2};\dfrac{\pi}{2}\right]\)
Tìm giá trị nhỏ nhất của các biểu thức sau
A=\(x^2-4x+1\) \(B=4x^2+4x+11\)
\(C=\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)
\(D=2x^2+y^2-2xy+2x-4y+9\)
Tìm giá trị lớn nhất của các biểu thức sau
\(E=5-8x-x^2\)
\(F=4x-x^2+1\)
Cho các số dương x, y thoả mãn x + y = 1. Tìm giá trị nhỏ nhất của\(P=\left(2x+\dfrac{1}{x}\right)^2+\left(2y+\dfrac{1}{y}\right)^2\)
Theo bđt Cauchy schwarz dạng Engel
\(P\ge\frac{\left(2x+2y+\frac{1}{x}+\frac{1}{y}\right)^2}{1+1}=\frac{\left[2\left(x+y\right)+\frac{1}{x}+\frac{1}{y}\right]^2}{2}\)
Ta có \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)(bđt phụ)
\(\Rightarrow P\ge\frac{\left[2.1+4\right]^2}{2}=\frac{36}{2}=18\)
Dấu ''='' xảy ra khi \(x=y=\frac{1}{2}\)
\(P=\left(2x+\dfrac{1}{x}\right)^2+\left(2y+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(2x+\dfrac{1}{x}+2y+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(2x+2y+\dfrac{4}{x+y}\right)^2=18\)
\(P_{min}=18\) khi \(x=y=\dfrac{1}{2}\)
Cho mình hỏi bạn Nguyễn Huy Tú, hãy giải thích cho mình hiểu về bất đẳng thức Cauchy schawarz (Định lý, chứng minh,..). Đây là lần đầu tiên mình được nghe tên về bất đẳng thức này nên mong bạn giải thích dễ hiểu. Chúc bạn ngày một thành công hơn trong con đường học vấn của mình !
Cho đa thức g(x)=2x-1 nếu x≥\(\dfrac{1}{2}\)
=-(2x-1) nếu x<\(\dfrac{1}{2}\)
Tìm giá trị nhỏ nhất của biểu thức M=\(\left|5x^{2^{ }}+5\right|+g\left(x\right)+2004-5x^2\)
Tìm giá trị nhỏ nhất của hàm số \(f\left(x\right)=x+2\text{/}\left(x-1\right)\) với \(x>1\)
\(f\left(x\right)=x+\dfrac{2}{x-1}=x-1+\dfrac{2}{x-1}+1\ge2\sqrt{\dfrac{2\left(x-1\right)}{x-1}}+1=2\sqrt{2}+1\)
\(f\left(x\right)_{min}=2\sqrt{2}+1\)
Ta có: \(f\left(x\right)=x+\dfrac{2}{x-1}=x-1+\dfrac{2}{x-1}+1\)
Vì x > 1 nên x - 1 > 0 và \(\dfrac{2}{x-1}>0\)
Áp dụng bất đẳng thức cô-si cho hai số dương \(x-1;\dfrac{2}{x-1}\) ta được:
\(x-1+\dfrac{2}{x-1}\ge2.\sqrt{x-1.\dfrac{2}{x-1}}=2\sqrt{2}\)
\(=>f\left(x\right)=x-1+\dfrac{2}{x-1}+1\ge2\sqrt{2}+1\)
⇒ Giá trị bé nhất của f(x) là 2√2 + 1 .
Dấu “=” xảy ra khi và chỉ khi x - 1 = \(\dfrac{2}{x-1}\) và x > 1 ⇔ x = 1 + √2
\(f\left(x\right)=x\dfrac{2}{x-1}=x-1+\dfrac{2}{x-1}+1\)
Cho F=\(\dfrac{1}{x^2-2x+1}-\left(\dfrac{x}{x^2-1}-\dfrac{1}{x\left(x^2-1\right)}\right)\):\(\dfrac{x^2-2x+1}{x+x^3}\)
a) Rút gọn F
b) Với giá trị của với x là nghiệm của phương trình (x-2)(x+1)=0
c) Tính giá trị của x để F =-1
d) Chứng minh rằng F<0
Tìm giá trị nhỏ nhất của đa thức :
\(E=\left(x-3\right)^2+\left(x-11\right)^2\)
\(F=\dfrac{-2}{x^2-2x+5}\)
\(G=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\)
+) \(E=x^2-6x+9+x^2-22x+121=2x^2-28x+130\)
\(\Rightarrow2E=4x^2-56x+242=\left(4x^2-56x+196\right)+46=\left(2x-14\right)^2+46\)
Vì \(\left(2x-14\right)^2\ge0\Rightarrow2E=\left(2x-14\right)^2+46\ge46\Rightarrow E\ge23\)
Dấu "=" xảy ra khi x=7
Vậy Emin=23 khi x=7
+) \(F=\frac{-2}{x^2-2x+5}=\frac{-2}{x^2-2x+1+4}=\frac{-2}{\left(x-1\right)^2+4}\)
Vì \(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\Rightarrow F=\frac{-2}{\left(x-1\right)^2+4}\le-\frac{2}{4}=-\frac{1}{2}\)
Dấu "=" xảy ra khi x=1
Vậy Fmin=-1/2 khi x=1
+) \(G=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)=\left(x^2-6x+x-6\right)\left(x^2-3x-2x+6\right)=\left(x^2-5x-6\right)\left(x^2-5x+6\right)\)
Đặt x2-5x=t, ta được:
\(G=\left(t-6\right)\left(t+6\right)=t^2-36=\left(x^2-5x\right)^2-36\)
Vì \(\left(x^2-5x\right)^2\ge0\Rightarrow G=\left(x^2-5x\right)^2-36\ge36\)
Dấu "=" xảy ra khi x=0 hoặc x=5
Vậy Gmin=36 khi x=0 hoặc x=5
Tìm giá trị nhỏ nhất :
\(D=\left|x-\dfrac{1}{2}\right|+\left|x-\dfrac{1}{3}\right|+\left|x-\dfrac{1}{4}\right|+...+\left|x-\dfrac{1}{2022}\right|\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left(x\right)=\dfrac{2x-1}{x-3}\) trên đoạn \(\left[0;2\right]\) ?
\(f\left(x\right)=\dfrac{2x-1}{x-3}=\dfrac{2\left(x-3\right)+5}{x-3}=1+\dfrac{5}{\left(x-3\right)}\)
f(x) có dạng \(y=\dfrac{5}{x}\Rightarrow\) f(x) luôn nghịch biến
Tất nhiên bạn có thể tính đạo hàm --> f(x) <0 mọi x khác -3
f(x) luôn nghich biến [0;2] < -3 thuộc nhánh Bên Phải tiệm cận đứng
\(\Rightarrow\left\{{}\begin{matrix}Max=f\left(0\right)=\dfrac{1}{3}\\Min=f\left(2\right)=-3\end{matrix}\right.\)