√9𝑥2=2𝑥+1
√2𝑥+1−√𝑥+3+√2𝑥−1−√𝑥−1=0
𝑥(2𝑥 − 1) − 2𝑥(𝑥 + 3) = 8
\(\Leftrightarrow2x^2-x-2x^2-6x=8\\ \Leftrightarrow-7x=8\Leftrightarrow x=-\dfrac{8}{7}\)
`x(2x-1)-2x(x+3)=8`
`=>3x^2-x-2x^2-6x=8`
`=>-7x=8`
`=>x=8:(-7)`
`=>x=-8/7`
Tìm x biết: |𝑥−2|+|3−2𝑥|=2𝑥+1
Thực hiện phép tính: (tính hợp lý)
𝑎) (2𝑥−1)(2𝑥+1)(2𝑥−5) ;
𝑏) (𝑥2+𝑥−3)(𝑥2−𝑥+3)
* Gợi ý: Dùng những hằng đẳng thức đáng nhớ để biến đổi.
\(a,=\left(4x^2-1\right)\left(2x-5\right)=8x^3-20x^2-2x+5\\ b,=\left[x^2+\left(x-3\right)\right]\left[x^2-\left(x-3\right)\right]=x^4-\left(x-3\right)^2\\ =x^4-x^2+6x-9\)
𝑎)2𝑥−1𝑥−3+4=−1𝑥−3
⇔2x-1x+1x=-3+3-4
⇔2x=-4
⇔x=-2
𝑏)3𝑥−22𝑥+5=6𝑥+14𝑥−3
⇔5+3=6x+14x-3x+22x
⇔8=39x
⇔x=\(\frac{8}{39}\)
𝑐)𝑥+3𝑥+1+𝑥−2𝑥=2
⇔x+3x+x-2x=2-1
⇔3x=1
⇔x=\(\frac{1}{3}\)
𝑑)x+1−2𝑥−3𝑥−1=2𝑥+3𝑥2−1
⇔3x2+2x+2x+3x-x-1-1+1=0
⇔3x2+6x-1=0
⇔3x2+3x+3x+3-4=0
⇔3x(x+1)+3(x+1)-4=0
⇔3(x+1)(x+1)-4=0
⇔3(x+1)2-4=0
⇔(x+1)2=\(\frac{4}{3}\)
⇔\(\left[{}\begin{matrix}x+1=\frac{4}{3}\\x+1=-\frac{4}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{4}{3}-1\\x=-\frac{4}{3}-1\end{matrix}\right.\)
Vậy ...
a, 2x - x - 3 + 4 = -x - 3
\(\Leftrightarrow\) x + 1 = -x - 3
\(\Leftrightarrow\) x + x = -3 - 1
\(\Leftrightarrow\) 2x = -4
\(\Leftrightarrow\) x = -2
Vậy S = {-2}
b, 3x - 22x + 5 = 6x + 14x - 3
\(\Leftrightarrow\) -19x + 5 = 20x - 3
\(\Leftrightarrow\) -19x - 20x = -3 - 5
\(\Leftrightarrow\) -39x = -8
\(\Leftrightarrow\) x = \(\frac{8}{39}\)
Vậy S = {\(\frac{8}{39}\)}
c, x + 3x + 1 + x - 2x = 2
\(\Leftrightarrow\) 3x + 1 = 2
\(\Leftrightarrow\) 3x = 2 - 1
\(\Leftrightarrow\) 3x = 1
\(\Leftrightarrow\) x = \(\frac{1}{3}\)
Vậy S = {\(\frac{1}{3}\)}
Phần d mình ko hiểu, bạn viết rõ được ko!
Chúc bn học tốt!!
d, x + 1 - 2x - 3x - 1 = 2x + 3x2 - 1
\(\Leftrightarrow\) x + 1 - 2x - 3x - 1 - 2x - 3x2 + 1 = 0
\(\Leftrightarrow\) -3x2 - 6x + 1 = 0
\(\Leftrightarrow\) -(3x2 + 6x - 1) = 0
\(\Leftrightarrow\) 3x2 + 6x - 1 = 0
\(\Leftrightarrow\) 3x2 + 3x + 3x + 3 - 4 = 0
\(\Leftrightarrow\) 3x(x + 1) + 3(x + 1) - 4 = 0
\(\Leftrightarrow\) 3(x + 1)(x + 1) - 4 = 0
\(\Leftrightarrow\) 3(x + 1)2 - 4 = 0
\(\Leftrightarrow\) (x + 1)2 = \(\frac{4}{3}\)
\(\Leftrightarrow\) x + 1 = \(\sqrt{\frac{4}{3}}\) hoặc x + 1 = \(-\sqrt{\frac{4}{3}}\)
\(\Leftrightarrow\) x = \(\sqrt{\frac{4}{3}}\) - 1 và x = \(-\sqrt{\frac{4}{3}}\) - 1
\(\Leftrightarrow\) x = \(\frac{2\sqrt{3}-3}{3}\) và x = \(\frac{-2\sqrt{3}-3}{3}\)
Vậy S = {\(\frac{2\sqrt{3}-3}{3}\); \(\frac{-2\sqrt{3}-3}{3}\)}
Chúc bn học tốt!!
b) (𝑥+7)−25=13 c) 𝑥2=49 d) 2𝑥−49=5.32
c) 𝑥2=49
d) 2𝑥−49=5.32
e) 140:(𝑥−8)=7
f) 4.(𝑥−3)=72−13
g) 𝑥3=27
h) (2𝑥+1)3=125
\(b,\Leftrightarrow x+7=38\Leftrightarrow x=31\\ c,\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-7\end{matrix}\right.\\ d,\Leftrightarrow2x=160-49=111\Leftrightarrow x=\dfrac{111}{2}\\ e,\Leftrightarrow x-8=20\Leftrightarrow x=28\\ f,\Leftrightarrow x-3=\dfrac{59}{4}\Leftrightarrow x=\dfrac{71}{4}\\ g,\Leftrightarrow x=3\\ h,\Leftrightarrow2x+1=5\Leftrightarrow2x=4\Leftrightarrow x=2\)
Phân tích đa thức 8𝑥 3 -1 thành nhân tử
A.(2𝑥 − 1)(4𝑥 2+2x+1)
B.(2𝑥 + 1)(4𝑥 2+2x+1)
C.(2𝑥 − 1)(4𝑥 2 - 2x+1)
D.(2𝑥 − 1)(4𝑥 2+4x+1)
Câu 17 Phân tích đa thức 5x2 -4x +10xy-8y thành nhân tử
A..(5x-4)(x-2y)
B. (x+2y)(5x-4)
C.(5x-2y)(x+4y)
D.(5x+4)(x-2y)
Câu 18 Phân tích đa thức 8x3 + 12x2y + 6xy2 + y3 thành nhân tử :
A. (2x + y)3
B.(2x - y)3
C. (2x + y3 ) 3
D. (2x3 + y)3
Câu 19 Tìm x, biết (x + 2) . ( x – 1 ) – x 2 = –1
A. x = –2 4
B. x = 2
C. x = 1
D. x = –1
Câu 20 Tìm x biết x . ( x – 3) = x2 + 6
A. x = 2
B. x = –2
C. x = 4
D. x = 6
Câu 21 Tìm x biết : (𝑥 + 3)(𝑥 − 3) − 𝑥(𝑥 − 3) =0
A. x = 3.
B. x= -3
C. x=1
D. x=0
\(16,A\\ 17,C\\ 18,A\\ 19,C\\ 20,A\\ 21,A\)
1) Làm tính nhân
a) 𝑥. (𝑥2 – 5) | b) 3𝑥𝑦(𝑥2 − 2𝑥2𝑦 + 3) |
c) (2𝑥 − 6)(3𝑥 + 6) 2) Tính (áp dụng Hằng đẳng thức) | d) (𝑥 + 3𝑦)(𝑥2 − 𝑥𝑦) |
a) (2𝑥 + 5)(2𝑥 − 5)
| b) (𝑥 − 3)2 c) (4 + 3𝑥)2 |
d) (𝑥 − 2𝑦)3 | e) (5𝑥 + 3𝑦)3 |
f) (5 − 𝑥)(25 + 5𝑥 + 𝑥2) | g) (2𝑦 + 𝑥)(4𝑦2 − 2𝑥𝑦 + 𝑥2) |
3) Phân tích các đa thức sau thành nhân tử
a) 𝑥2 + 2𝑥 | b) 𝑥2 − 6𝑥 + 9 |
c) 5(𝑥 – 𝑦) – 𝑦(𝑦 – 𝑥) | d) 2𝑥 − 𝑦2 + 2𝑥𝑦 − 𝑦 |
a) 6𝑥3𝑦4 + 12𝑥2𝑦3 − 18𝑥3𝑦2 | b) 𝑥2 − 2𝑥𝑦 + 𝑦2 − 36 |
c) 5𝑥2 + 3𝑥 − 5𝑥𝑦 − 3𝑦 | d) 𝑥2 − 5𝑥 − 6 |
e) 𝑥3 − 3𝑥2 − 4𝑥 + 12 4) Rút gọn biểu thức | f) 𝑥3 + 27 + (𝑥 + 3)(𝑥 − 9) |
a) (𝑥2 + 1)(𝑥 − 3) − (𝑥 − 3)(𝑥2 + 3𝑥 + 9)
b) (𝑥 + 2)2 + 𝑥(𝑥 + 5)
c) (5𝑥 + 4𝑦)(5𝑥 − 4𝑦) − 24𝑥2 + 15𝑦2 5) Tìm x, biết:
a) 2𝑥(𝑥2 − 9) = 0 b) 2𝑥(𝑥 − 2021) − 𝑥 + 2021 = 0
c) 4𝑥2 − 16𝑥 = 0 d) (3𝑥 + 7)2 − (𝑥 + 1)2 = 0
6) Làm tính chia
a) 14𝑥3𝑦 ∶ 10𝑥2 b) (𝑥3 − 27) ∶ (3 − 𝑥)
c) 8𝑥3𝑦3𝑧 ∶ 6𝑥𝑦3 d) (𝑥2 − 9𝑦2 + 4𝑥 + 4) ∶ (𝑥 + 3𝑦 + 2)
7) a) Tìm giá trị nhỏ nhất của biểu thức: 𝐴 = (𝑥 − 1)(𝑥 − 3) + 11
b) Tìm giá trị lớn nhất của biểu thức: 𝐵 = 5 − 4𝑥2 + 4𝑥
c) Cho 𝑥 – 𝑦 = 2. Tìm giá trị lớn nhất của đa thức 𝐵 = 𝑦2 − 3𝑥2
8) Tìm số để đa thức 𝑥3 − 3𝑥2 + 5𝑥 + 𝑎 chia hết cho đa thức 𝑥 − 2 9) Áp dụng kết quả bài tập 31 – SGK – tr.16, hãy:
a) Tính 𝑎3 − 𝑏3 biết 𝑎. 𝑏 = 8 và 𝑎 − 𝑏 = −6
b) Tính 𝑎3 + 𝑏3 biết 𝑎. 𝑏 = −12 và 𝑎 + 𝑏 = 1
c) Tính 𝑎3 + 𝑏3 biết 𝑎2 + 𝑏2 = 30 và 𝑎 + 𝑏 = 2
5) a) 2x(x^2 - 9) = 0
<=> 2x(x - 3)(x + 3) = 0
<=> x = 0 hoặc x = 3 hoặc x = -3
b) 2x(x - 2021) - x + 2021 = 0
<=> (2x - 1)(x - 2021) = 0
<=> 2x - 1 = 0 hoặc x - 2021 = 0
<=> x = 1/2 hoặc x = 2021
c) 4x^2 - 16x = 0
<=> 4x(x - 4) = 0
<=> x = 0 hoặc x = 4
d) (3x + 7)^2 - (x + 1)^2 = 0
<=> (3x + 7 + x + 1)(3x + 7 - x - 1) = 0
<=> (4x + 8)(2x + 6) = 0
<=> 4x + 8 = 0 hoặc 2x + 6 = 0
<=> x = -2 hoặc x = -3