Tìm no nguyên dương của pt: 1! + 2! + 3! + ... + x! = y3
cho pt x^2 + (2m+1)x - n +3 = 0 (n,m là tham số )
a, xác định n,m để pt có 2no -3và-2
b, trong trường hợp m=2 , tìm số nguyên dương n bé nhất để pt đã cho có no dương
1. tìm nghiệm nguyên dương của pt: 5(x+y+z+t) +10 = 2xyzt. bài này lm mãi k ra :)) :P
2. tìm nghiệm nguyên dương của pt: y^4 +y^2 = x^4 + x^3 + x^2 +x
xin câu tl chi tiết ak...
cho pt x2 + (2m + 1 )x - n = 0 ( m,n là tham số )
a, xđịnh m,n để pt có 2no -3và-2
b, trong trường hợp m=2, tìm số nguyên dương n bé nhất để pt đã cho có no dương
\(\left(m^2-2m+1\right)x-4x=-m\)
\(\Leftrightarrow\left(m^2-2m-3\right)x=-m\)
Pt có nghiệm khi \(m\ne\left\{-1;3\right\}\)
Khi đó: \(x=\dfrac{-m}{m^2-2m-3}\)
\(x>0\Rightarrow\dfrac{-m}{m^2-2m-3}>0\)
\(\Rightarrow\left[{}\begin{matrix}m< -1\\0< m< 3\end{matrix}\right.\)
Cho pt : x^2 - 2x + m - 3 = 0 . Tìm m để pt có 2 No dương p biệt x1 , x2 t/ mãn : x^2 1 + 12 = 2 x2 - x1 x2
Δ=(-2)^2-4(m-3)
=4-4m+12=16-4m
Để phương trình có hai nghiệm dương phân biệt thì 16-4m>0 và m-3>0
=>m>3 và m<4
x1^2+x2^2=(x1+x2)^2-2x1x2
=2^2-2(m-3)=4-2m+6=10-2m
=>x1^2=10-2m-x2^2
x1^2+12=2x2-x1x2
=>10-2m-x2^2+12=2x2-m+3
=>\(-x_2^2+22-2m-2x_2+m-3=0\)
=>\(-x_2^2-2x_2-m+19=0\)
=>\(x_2^2+2x_2+m-19=0\)(1)
Để (1) có nghiệmthì 2^2-4(m-19)>0
=>4-4m+76>0
=>80-4m>0
=>m<20
=>3<m<4
Cho p là số nguyên tố và x, y nguyên dương sao cho x3 + y3 - 3xy = p - 1.
Tìm GTLN của p
Không hiểu sao cái dòng đó lại nhảy như thế. Mình đánh lại.
Giả thiết tương đương với:
\((x+y+1)(x^2+y^2+1-xy-x-y)=p\).
Do x + y + 1 > 1 và p là số nguyên tố nên x + y + 1 = p và \(x^2+y^2+1-x-y-xy=1\Leftrightarrow\left(x+y\right)^2-\left(x+y\right)=3xy\le\dfrac{3}{4}\left(x+y\right)^2\Rightarrow x+y\le4\Rightarrow p\le5\).
Ta thấy 5 là số nguyên tố. Đẳng thức xảy ra khi x = y = 2.
Vậy max p = 5 khi x = y = 2.
Cho pt mx^2+2x-4m+4=0 1) CMR PT luôn có No dương vs mọi gt của m 2) tìm m để pt có No âm
Tìm nghiệm nguyên dương của pt: 2^x +(x^2+1)(y^2-6y+8)=0.
Ta có \(2^x+\left(x^2+1\right)\left(y-2\right)\left(y-4\right)=0\)
Mà \(2^x>0,x^2+1>0\)
=> \(\left(y-2\right)\left(y-4\right)< 0\)
=> \(2< y< 4\)
=> \(y=3\)
Thay y=3 vào đề bài ta có:
\(2^x-\left(x^2+1\right)=0\)
=> \(2^x=x^2+1\)
Mà \(2^x\)chẵn với \(x>0\)
=> \(x\)lẻ
Đặt \(x=2k+1\)(k không âm)
Khi đó \(2^{2k+1}=\left(2k+1\right)^2+1\)
=> \(2.2^{2k}=4k^2+4k+2\)
=> \(2^{2k}=2k^2+2k+1\)
+ k=0 => \(2^0=1\)thỏa mãn
=> \(x=1\)
+ \(k>0\)=> \(2^k\)chẵn
Mà \(2k^2+2k+1\)lẻ với mọi k
=> không giá trị nào của k thỏa mãn
Vậy x=1,y=3
Tìm nghiệm nguyên dương của hệ phương trình: x + y = z x 3 + y 3 = z 2
Ta có: x 3 + y 3 = ( x + y ) 2 < = > ( x + y ) ( x 2 − x y + y 2 − x − y ) = 0
Vì x, y nguyên dương nên x+y > 0, ta có: x 2 − x y + y 2 − x − y = 0
⇔ 2 ( x 2 − x y + y 2 − x − y ) = 0 ⇔ x - y 2 + x - 1 2 + ( y - 1 ) 2 = 2
Vì x, y nguyên nên có 3 trường hợp:
+ Trường hợp 1: x − y = 0 x - 1 2 = 1 ⇔ x = y = 2 , z = 4 y - 1 2 = 1
+ Trường hợp 2: x − 1 = 0 x - y 2 = 1 ⇔ x = 1 , y = 2 , z = 3 y - 1 2 = 1
+ Trường hợp 3: y − 1 = 0 x - y 2 = 1 x - 1 2 = 1 ⇔ x = 2 , y = 1 , z = 3
Vậy hệ có 3 nghiệm (1,2,3);(2,1,3);(2,2,4)