Tìm GTLN
M = 2x -2 -3x2
P = 2- x2 - y2 -2(x+y)
Giup mình với nha !
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
Bài 1: Thực hiện phép tính:
a) x(3x2 – 2x + 5) b) 1/3 x2 y2 (6x + 2/3x2 – y)
c) ( 1/3x + 2)(3x – 6) d) ( 1/3x + 2)(3x – 6)
e) (x2 – 3x + 1)(2x – 5) f) ( 1/2x + 3)(2x2 – 4x + 6)
Bài 2: Tìm x, biết:
a) 3(2x – 3) + 2(2 – x) = –3 b) x(5 – 2x) + 2x(x – 1) = 13
c) 5x(x – 1) – (x + 2)(5x – 7) = 6 d) 3x(2x + 3) – (2x + 5)(3x – 2) = 8
Bài 3: Chứng tỏ rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến: a) A = x(2x + 1) – x2 (x + 2) + x3 – x + 3
b) B = (2x + 11)(3x – 5) – (2x + 3)(3x + 7) + 5
Bài 4: Tính giá trị của biểu thức
a) A = 2x( 1/2x2 + y) – x(x2 + y) + xy(x3 – 1) tại x = 10; y = – 1 10
b) B = 3x2 (x2 – 5) + x(–3x3 + 4x) + 6x2 tại x = –5
\(1,\\ a,=3x^3-2x^2+5x\\ b,=2x^3y^2+\dfrac{2}{9}x^4y^2-\dfrac{1}{3}x^2y^3\\ c,=x^2-2x+6x-12=x^2+4x-12\\ 2,\\ a,\Rightarrow6x-9+4-2x=-3\\ \Rightarrow4x=2\Rightarrow x=\dfrac{1}{2}\\ b,\Rightarrow5x-2x^2+2x^2-2x=13\\ \Rightarrow3x=13\Rightarrow x=\dfrac{13}{3}\\ c,\Rightarrow5x^2-5x-5x^2+7x-10x+14=6\\ \Rightarrow-8x=-8\Rightarrow x=1\\ d,\Rightarrow6x^2+9x-6x^2+4x-15x+10=8\\ \Rightarrow-2x=-2\Rightarrow x=1\)
\(3,\\ A=2x^2+x-x^3-2x^2+x^3-x+3=3\\ B=6x^2-10x+33x-55-6x^2-14x-9x-21=-76\)
Bài 4:
b: Ta có: \(B=3x^2\left(x^2-5\right)+x\left(-3x^3+4x\right)+6x^2\)
\(=3x^4-15x^2-3x^3+4x^2+6x^2\)
\(=-5x^2\)
\(=-5\cdot25=-125\)
B1. tìm x :
a. (x+3)3 -x(3x+1)2 + (2x+1).(4x2-2x+1)-3x2=42
b. 5x(x+3)2-5(x+1)3+15(x+2)(x-2)=5
B2. tìm cặp x , y
x2(x+3)+y2(y+5)-(x+y)(x2-xy+y2)=0
Bài 1: Thực hiện phép tính :
a)2xy(x2 +xy-3y2 )
b)(x+2)(3x2-4x)
c)(x3 +3x2 -8x-20):(x+2)
d)(4x2 -4x-4):(x+4)
e)(2x3 - 3x2 +x-2):(x+5)
f) (x+y)2 +(x-y)2 -2(x+y)(x-y)
g)(a+b)3 - (a-b)3 -2b3
h)(x-y)(x+y)(x2 + y2 )(x4 +y4)
i)2x2 (x-2)+3x(x2 -x-2)-5(3-x2 )
k)(x-1)(x-3)-(4-x)(2x+1)-3x2+2x-5
l)( x4 -x3 -3x2 +x+2):(x2 - 1)
(Giups mình với, cảm ơn mọi người nhiều ạ )
Tải trên điện thoaaij về phần mềm PhotoMath thì bạn sẽ có đáp án và bài giải bài thực hiện phép tính này. Nếu thắc mắc về cánh sử dụng thì seach mạng.
\(2xy\left(x^2+xy-3y^2\right)\)
\(=2xy.x^2+2xy.xy-2xy.3y^2\)
\(=2x^3y+2x^2y^2-6xy^3\)
Phân tích các đa thức sau thành nhân tử
a) 2x3+ 6x= 2x.( x2 +3)
b) 5x. (x-2) - 3x2.( x-2)
c) 3x.(x-5y)- 2y. (5y-x)
d) y2. (x2+ y)- zx2- xy
e) 2ax3+ 4bx2y + 2x2. (ã-by)
f) 3x2. (y2- 2x)- 15x. (2x-y)2
\(a.2x^3+6x=2x\left(x^2+3\right)\)
\(=2x\left(x^2+3\right)-2x\left(x^2+3\right)\)
\(=\left(x^2+3\right)\left(2x-2x\right)\)
\(b.5x\left(x-2\right)-3x^2\left(x-2\right)\)
\(=\left(x-2\right)\left(5x-3x^2\right)\)
\(c.3x\left(x-5y\right)-2y\left(5y-x\right)\)
\(=3x\left(x-5y\right)+2\left(x-5y\right)\)
\(=\left(x-5y\right)\left(3x+2\right)\)
\(d.y^2\left(x^2+y\right)-x^3-xy\)
\(=y^2\left(x^2+y\right)-x\left(x^2+y\right)\)
\(=\left(x^2+y\right)\left(y^2-x\right)\)
e. Cái bài này ghi lại đàng hoàng xíu nha t k hỉu
\(f.3x^2\left(y^2-2x\right)-15x\left(2x-y^2\right)\)
\(=3x^2\left(y^2-2x\right)+15x\left(y^2-2x\right)\)
\(=\left(y^2-2x\right)\left(3x^2+15x\right)\)
Bài 1: Thực hiện phép tính:
a) 2x.(3x2 – 5x + 3) b) (-2x-1).( x2 + 5x – 3 ) – (x-1)3
c) (2x – y).(4x2 + 2xy + y2) d) (6x5y2 – 9x4y3 + 15x3y4) : 3x3y2
e) (x3 – 3x2 + x – 3) : (x – 3)
Bài 2: Tìm x, biết:
a) 5x(x – 1) = 10 (x – 1); b) 2(x + 5) – x2 – 5x = 0;
c) x3 - x = 0; d) (2x – 1)2 – (4x – 3)2 = 0
e) (5x + 3)(x – 4) – (x – 5)x = (2x – 5)(5+2x )
Bài 3: Chứng minh rằng giá trị của biểu thức không phụ thuộc vào giá trị của biến.
a) x(3x + 12) – (7x – 20) + x2(2x – 3) – x(2x2 + 5).
b) 3(2x – 1) – 5(x – 3) + 6(3x – 4) – 19x.
Bài 4: Phân tích đa thức thành nhân tử.
a) 10x(x – y) – 8(y – x) b) (3x + 1)2 – (2x + 1)2
c) - 5x2 + 10xy – 5y2 + 20z2 d) 4x2 – 4x +4 – y2
e) 2x2 - 9xy – 5y2 f) x3 – 4x2 + 4 x – xy2
Bài 5: Tìm giá trị nhỏ nhất của biểu thức
a) A = 9x2 – 6x + 11 b) B = 4x2 – 20x + 101
Bài 6: Tìm giá trị lớn nhất của biểu thức
a) A = x – x2 b) B = – x2 + 6x – 11
a) 2x.(3x2 – 5x + 3)
=2x3-10x2+6x
b(-2x-1).( x2 + 5x – 3 ) – (x-1)3
=-2x3 - 10x2 + 6x - x2 - 5x + 3 - x3 + 3x2 - 3x + 1
= -3x3 - 8x2 - 2x + 4
d) (6x5y2 – 9x4y3 + 15x3y4) : 3x3y2
=2x2-3xy+5y2
Bài 1: Rút gọn các biểu thức:
a. (2x - 1)2 - 2(2x - 3)2 + 4
b. (3x + 2)2 + 2(2 + 3x)(1 - 2y) + (2y - 1)2
c. (x2 + 2xy)2 + 2(x2 + 2xy)y2 + y4
d. (x - 1)3 + 3x(x - 1)2 + 3x2(x -1) + x3
e. (2x + 3y)(4x2 - 6xy + 9y2)
f. (x - y)(x2 + xy + y2) - (x + y)(x2 - xy + y2)
g. (x2 - 2y)(x4 + 2x2y + 4y2) - x3(x – y)(x2 + xy + y2) + 8y3
a: \(\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)
\(=4x^2-4x+1+4-2\left(4x^2-12x+9\right)\)
\(=4x^2-4x+5-8x^2+24x-18\)
\(=-4x^2+20x-13\)
e: \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)=8x^3+27y^3\)
1. Tìm x,y:
a) (x+2)2 + (x-3)2 = 2x ( x+ 7)
b) x3- 3x2 + 3x - 126 = 0
c) x2 + y2 - 2x + 4y + 5 = 0
d) 2x2 - 2xy + y2 + 4x + 4 = 0
\(a.\left(x^2+4x+4\right)+\left(x^2-6x+9\right)=2x^2+14x\)
\(x^2+4x+4+x^2-6x+9-2x^2-14x=0\)
\(-18x+13=0\)
\(x=\dfrac{13}{18}\)
Vậy \(S=\left\{\dfrac{13}{18}\right\}\)
\(b.\left(x-1\right)^3-125=0\)
\(\left(x-1\right)^3=125\)
\(x-1=5\)
\(x=6\)
Vậy \(S=\left\{6\right\}\)
\(c.\left(x-1\right)^2+\left(y +2\right)^2=0\)
\(Do\left(x-1\right)^2\ge0\forall x;\left(y+2\right)^2\ge0\forall y\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\)
Mà \(\left(x-1\right)^2+\left(y+2\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Vậy \(S=\left\{1;-2\right\}\)
\(d.x^2-4x+4+x^2-2xy+y^2=0\)
\(\left(x-2\right)^2+\left(x-y\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-2\right)^2=0\\\left(x-y\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-y=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)
Vậy \(S=\left\{2;2\right\}\)
Trong mặt phẳng tọa độ Oxy cho đthag (d) y= x-m+1 và (P) y =1/2x Tìm m để đthag (d) cắt (P ) tại 2 điểm phân biệt có hoành độ x1,x2 . Sao cko 2x1 -3x2 = y2^2 + 1/4x2