Cho a,b,c >0 và a+b+c=3. Tìm Min P=a2+b2+c2+\(\dfrac{ab+bc+ca}{a^2b+b^2c+c^2a}\).
a, cho a=+b+c =1; a,b,c dương
tìm GTNN: A= a/b2+1 + b/c2+1 + c/a2+1
b, cho a,b,c dương có tổng =2
tìm GTNN; B= a/ab+2c + b/bc+2a + c/ca+2b
c, cho a,b,c dương và a+b+c<1
tìm GTNN: C= 1/a2+2bc + 1/ b2+2ac + 1/c2+2ab
Phân tích thành nhân tử :
a). a(b2 + c2 + bc) + b(c2 + a2 + ac) + c(a2 + b2 + ab);
b). (a + b + c) (ab + bc + ca) - abc
c*). a(a + 2b)3 - b(2a + b)3.
c: Ta có: \(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)
\(=a^4+6a^3b+12a^2b^2+8ab^3-8a^3b-12a^2b^2-6ab^3-b^4\)
\(=a^4-2a^3b+2ab^3-b^4\)
\(=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)-2ab\left(a^2-b^2\right)\)
\(=\left(a-b\right)^3\cdot\left(a+b\right)\)
Cho a,b,c>0 t/m a+b+c=3.
Tìm min \(P=a^2+b^2+c^2+\dfrac{ab+bc+ca}{a^2b+b^2c+c^2a}\)
Cho a, b, c > 0 thỏa mãn điều kiện abc = 1. Tìm GTNN của:
\(T=\dfrac{bc}{a^2b+a^2c}+\dfrac{ca}{b^2c+b^2a}+\dfrac{ab}{c^2a+c^2b}\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(T=\frac{\frac{1}{a^2}}{\frac{1}{b}+\frac{1}{c}}+\frac{\frac{1}{b^2}}{\frac{1}{c}+\frac{1}{a}}+\frac{\frac{1}{c^2}}{\frac{1}{a}+\frac{1}{b}}\geq \frac{(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})^2}{2(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})}=\frac{1}{2}(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})\)
\(\geq \frac{1}{2}.3\sqrt[3]{\frac{1}{abc}}=\frac{3}{2}\) (theo BĐT AM-GM)
Vậy $T_{\min}=\frac{3}{2}$.
Giá trị này đạt tại $a=b=c=1$
cho a,b,c không đồng thời bằng 0 thỏa mãn a2+b2+c2=2,ab+bc+ca =1.tìm min,max của a,b,c
Cho a,b,c không âm. Chứng minh rằng :
a) a2 + b2 + c2 + 2abc + 2 > hoặc=ab +bc +ca +a+b+c
b)a2 + b2 +c2 +abc +4 > hoặc = 2(ab+bc+ca)
c) 3(a2 + b2 + c2) + abc +4 > hoặc =4 (ab+bc+ca)
d) 3(a2 + b2 + c2) + abc +80 > 4(ab+bc+ca) + 8(a+b+c)
Cho ba số a, b, c đề khác 0 và a2 + b2 + c2 - ab - bc - ca = 0
CMR: ( 1 + \(\dfrac{a}{b}\) ) ( 1 + \(\dfrac{b}{c}\) ) ( 1 + \(\dfrac{c}{a}\) ) = 8
Lời giải:
$a^2+b^2+c^2-ab-bc-ac=0$
$\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0$
$\Leftrightarrow (a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ac+a^2)=0$
$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$
Vì $(a-b)^2; (b-c)^2; (c-a)^2\geq 0$ với mọi $a,b,c$ nên để tổng của chúng bằng $0$ thì:
$a-b=b-c=c-a=0$
$\Rightarrow a=b=c$
$\Rightarrow \frac{a}{b}=\frac{b}{c}=\frac{c}{a}=1$
Khi đó:
$(\frac{a}{b}+1)(\frac{b}{c}+1)(\frac{c}{a}+1)=(1+1)(1+1)(1+1)=8$
Ta có đpcm.
Cho a,b,c∈Ra,b,c∈R và a2+b2+c2=21a2+b2+c2=21. Chứng minh rằng: 7≤|a−2b|+|b−2c|+|c−2a|≤√3997≤|a−2b|+|b−2c|+|c−2a|≤399 Ý tưởng: ( Nhưng không chắc chắn là đúng hướng :'> ) Dùng bất đẳng thức Cauchy-Schwarz để chứng minh bài toán -> x1+x2+...+xn≤|x1|+|x2|+...+|xn|≤√n(x21+x22+...+x2n)
cho 3 so a,b,c>0 và a+b+c=1 Tim min A=(a^2+b^2+c^2)+(ab+bc+ca)/(a^2b+b^2c+c^2a)