cho 3 so a,b,c>0 và a+b+c=1 Tim min A=(a^2+b^2+c^2)+(ab+bc+ca)/(a^2b+b^2c+c^2a)
a,b,c là các số thực dương. Tìm Min \(P=\dfrac{2a^2+ab}{\left(b+\sqrt{ca}+c\right)^2}+\dfrac{2b^2+bc}{\left(c+\sqrt{ab}+a\right)^2}+\dfrac{2c^2+ca}{\left(a+\sqrt{bc}+b\right)^2}\)
xét các số thực a,b,c t/m 0≤a,b,c≤2 và a+b+c=3. tìm giá trị nhỏ nhất của biểu thức
P=a2+b2+c2+\(\dfrac{\left(ab+bc+ca\right)^3+8}{ab+bc+ca}\)
mình đang cần gấp ,mọi người giúp mình nhé
\(\frac{a}{1+2b^2}+\frac{b}{1+2c^2}+\frac{c}{1+2a^2}\)Cho a,b,c>0 và ab+bc+ca=3 Tìm min P =
cho a,b,c ϵ R thỏa mãn a≥1; b≥1; 0≤c≤1 và a+b+c=3. Tìm GTLN và GTNN của P = (a2+b2+c2)/ab+bc+ca
cho a+b+c\(\le\)1; a,b,c>0 tìm Min P=\(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2a+b^2c}+\frac{ab}{c^2a+c^2b}\)
cho a,b,c là 3 số dương thỏa mãn: a+b+c=2019. Tìm GTNN : a3/a2+b2+ab + b3/b2+c2+bc + c3/c2+a2+ca
Cho a,b,c>0 và a+c+b=1. Tìm min \(Q=14\left(a^2+b^2+c^2\right)+\frac{ab+bc+ca}{a^2b+b^2c+c^2a}\)
B1:Cho a>0, a2=bc
a+b+c=abc
Cmr:
a lớn hơn hoặc bằng căn3,b>0,c>0,b2+c2 lớn hơn hoặc bằng 2a2
B2: Cho hệ
a2+b2+c2=2
ab+bc+ca=1
Cmr: a,b,c thuộc {-4/3;4/3}