tìm m để phươn g trình \(\left(m-1\right)x^2+2x+m=0\) có ít nhất 1 nghiệm không âm
1/ Cho phương trình: 3mx^2+2(2m+1)+m=0
Xác định m để phương trình có 2 nghiệm âm
2/ Tìm m để phương trình: (m-1)x^2+2x+m=0 có ít nhất 1 nghiệm ko âm
Tìm m để phương trình (m-1)x^2+2x+m=0 có ít nhất 1 nghiệm âm
Cho phương trình ẩn x sau: \(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)0
Tìm các giá trị của m để phương trình có nghiệm là một số không âm
cái o kia bị lỗi mọi người bỏ đi
\(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)
\(\Leftrightarrow2x^2-2x+mx-m-2x^2+mx+m-2=0\)
\(\Leftrightarrow-2x+2mx-2=0\)
\(\Leftrightarrow2\left(mx-x-1\right)=0\)
\(\Leftrightarrow mx-x-1=0\)
\(\Leftrightarrow x\left(m-1\right)=1\)
\(\Leftrightarrow x=\frac{1}{m-1}\)
\(\Rightarrow x>0\Leftrightarrow\frac{1}{m-1}>0\Leftrightarrow m-1>0\Leftrightarrow m>1\)
Vậy \(m>1\)thì \(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)có nghiệm không âm
Bài 1: Tìm m để phương trình \(\left(m-1\right)x^2+2x+m=0\) có ít nhất một nghiệm không âm
Bài 2: Với giá trị nào của a,b các phương trình bậc hai sau có 2 nghiệm chung
\(\left(2a+1\right)x^2-\left(3a-1\right)x+2=0\)
\(\left(b+2\right)x^2-\left(2b+1\right)x-1=0\)
Bài 3: a) Với giá trị nào của m thì 2 phương trình sau có nghiệm chung
\(2x^2+mx-1=0\) và \(mx^2-x+2=0\)
b) Tim \(m\in Z\) để 2 phương trình sau có ít nhất 1 nghiệm chung
\(x^2-mx-2=0\) và \(x^2-x+6m=0\)
Bài 5: \(\left(m+1\right)x^2-2\left(m+2\right)+m-3=0\)
Tìm m để phương trình sau có 2 nghiệm x1,x2 thỏa mãn:
a) \(x_1-3x_2=3\)
b) \(\left(4x_1+1\right)\left(4x_2+1\right)=18\)
Nhiều thế, chắc phải đưa ra đáp thôi
cho phương trình \(2cos2x+sin^2xcosx+sinxcos^2x=m\left(sinx+cosx\right)\)tìm m để phương trình có ít nhất 1 nghiệm thuộc đoạn\(\left[0;\dfrac{\Pi}{2}\right]\)
\(\Leftrightarrow2\left(cos^2x-sin^2x\right)+sinx.cosx\left(sinx+cosx\right)=m\left(sinx+cosx\right)\)
\(\Leftrightarrow\left(2cosx-2sinx\right)\left(sinx+cosx\right)+sinx.cosx\left(sinx+cosx\right)=m\left(sinx+cosx\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\left(\text{vô nghiệm trên đoạn xét}\right)\\2cosx-2sinx+sinx.cosx=m\left(1\right)\end{matrix}\right.\)
Xét (1), đặt \(t=cosx-sinx=\sqrt{2}cos\left(x+\dfrac{\pi}{4}\right)\)
\(\Rightarrow\left\{{}\begin{matrix}t\in\left[-1;1\right]\\sinx.cosx=\dfrac{1-t^2}{2}\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2t+\dfrac{1-t^2}{2}=m\)
Xét hàm \(f\left(t\right)=-\dfrac{1}{2}t^2+2t+\dfrac{1}{2}\) trên \(\left[-1;1\right]\)
\(-\dfrac{b}{2a}=2\notin\left[-1;1\right]\) ; \(f\left(-1\right)=-2\) ; \(f\left(1\right)=2\)
\(\Rightarrow-2\le f\left(t\right)\le2\Rightarrow-2\le m\le2\)
Tìm m để phương trình \(\left(m+1\right)x^2+2\left(m+4\right)x+m+1=0\) có hai nghiệm cùng âm
Trường hợp 1: m=-1
Pt sẽ là 6x=0
hay x=0
=>Loại
Trường hợp 2: m<>-1
Để phương trình có hai nghiệm cùng âm thì
\(\left\{{}\begin{matrix}\text{Δ}>0\\\dfrac{2\left(m+4\right)}{m+1}< 0\\\dfrac{m+1}{m+1}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(2m+8\right)^2-4\left(m+1\right)^2>0\\\dfrac{m+4}{m+1}< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4m^2+32m+64-4\left(m^2+2m+1\right)>0\\-4< m< -1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4m^2+32m+64-4m^2-8m-4< 0\\-4< m< -1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}24m+60< 0\\-4< m< -1\end{matrix}\right.\Leftrightarrow-4< m< -2.5\)
cho phương trình: \(\left(m-1\right)x^2+2\left(m-1\right)x-m=0\)
a) Tìm m để phương trình có nghiệm kép. tìm nghiệm
b) tìm m để phương trình có 2 nghiệm phân biệt đều âm
a) PT có nghiệm kép nếu
\(\hept{\begin{cases}m-1\ne0\\\Delta'=\left(m-1\right)^2+m\left(m-1\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}m\ne1\\\left(m-1\right)\left(2m-1\right)=0\end{cases}\Leftrightarrow}m=\frac{1}{2}}\)
Vậy \(m=\frac{1}{2}\)thì pt có nghiệm kép
\(x_1=x_2=-\frac{b}{2a}=-\frac{2\left(m-1\right)}{2\left(m-1\right)}=-1\)
b) Để pt có nghiệm phân biệt đều âm thì
\(\hept{\begin{cases}m-1\ne0\\\Delta'=\left(m-1\right)\left(2m-1\right)>0\end{cases}}\)
\(\hept{\begin{cases}x_1\cdot x_2=-\frac{m}{m-1}>0\\x_1+x_2=\frac{2\left(m-1\right)}{m-1}< 0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}m>1\\m< \frac{1}{2}\end{cases}}\)và \(0< m< 1\)
Vậy 0<m<\(\frac{1}{2}\)
định gõ ấn f5 cái thì thấy bạn làm xong r :((
giải nhanh quá !
thế kết luận như thế nào vậy?
Tìm m để pt có nghiệm phân biệt trái dấu
a) \(2x^2-\left(m^2-m+1\right)x+2m^2-3m-5=0\)
b) \(\left(m^2-3m+2\right)x^2-2m^2x-5=0\)
c) \(x^2-2\left(m-1\right)+m^2-2m=0\)( nghiệm âm có giá trị tuyệt đối lớn hơn)
a, Phương trình có hai nghiệm trái dấu khi \(2\left(2m^2-3m-5\right)< 0\)
\(\Leftrightarrow\left(2m-5\right)\left(m+1\right)< 0\)
\(\Leftrightarrow-1< m< \dfrac{5}{2}\)
b, TH1: \(m^2-3m+2=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\)
Phương trình đã cho có nghiệm duy nhất
TH2: \(m^2-3m+2\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ne2\end{matrix}\right.\)
Phương trình có hai nghiệm trái dấu khi \(-5\left(m^2-3m+2\right)< 0\)
\(\Leftrightarrow m^2-3m+2>0\)
\(\Leftrightarrow\left[{}\begin{matrix}m>2\\m< 1\end{matrix}\right.\)
Vậy \(m>2\) hoặc \(m< 1\)
c, Phương trình đã cho có hai nghiệm trái dấu \(x_1,x_2\) khi \(m^2-2m< 0\Leftrightarrow0< m< 2\)
Theo định lí Viet: \(x_1+x_2=2\left(m-1\right)\)
Yêu cầu bài toán thỏa mãn khi \(x_1+x_2< 0\Leftrightarrow2\left(m-1\right)< 0\Leftrightarrow m< 1\)
Vậy \(0< m< 1\)
Cho phương trình \(\left(2x+1\right)\left(x-1\right)-2x^2+mx+m-2=0.\) Tính các giá trị của m để phương trình có nghiệm là 1 số không âm. Ai đó giúp mình với, cô có giải nhưng mình không hiểu, các bạn có thể giải ra rõ ràng và dễ hiểu hơn mấy bước tắt hộ mình được không?
- Cô mình giải: \(\left(2x+1\right)\left(x-1\right)-2x^2+mx+m-2=0\)
\(\Leftrightarrow2x^2-2x+mx-m-2x^2+mx+m-2=0.\)
\(\Leftrightarrow\left(m-1\right)x=1\Rightarrow x=\frac{1}{m-1}\)
Vậy để phương trình có nghiệm là 1 số không âm thì \(m-1>0\Leftrightarrow m>1\)
Dễ hiểu mà bạn mấy cái dạng này mk gặp nhiều lần rồi
Ta có:\(\left(2x+1\right)\left(x-1\right)-2x^2+mx+m-2=0\)
Nhân ra thôi mà bạn:\(2x^2-2x+x-1-2x^2+mx+m-2=0\)
\(\Rightarrow-x-3+mx+m=0\)(Sao ko giống cái ở trên vậy hay là bạn giải sai kiểm tra lại đi rồi hãy nói)
bạn có cần phải kiêu căng vậy không? là sách giải bạn nhé :)))