Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hồ Minh Phi
Xem chi tiết
Akai Haruma
19 tháng 11 2018 lúc 23:26

Lời giải:

Áp dụng BDDT Cô-si cho các số dương:

\(x+y\geq 2\sqrt{xy}\)

\(9+xy\geq 2\sqrt{9xy}=6\sqrt{xy}\)

\(\Rightarrow (x+y)(9+xy)\geq 2\sqrt{xy}.6\sqrt{xy}=12xy\)

\(\Rightarrow x+y\geq \frac{12xy}{9+xy}\) (đpcm)

Dấu "=" xảy ra khi \(x=y>0; 9=xy\Rightarrow x=y=3\)

Nhái Channel
Xem chi tiết
Trúc Mai Huỳnh
Xem chi tiết
Lê Thanh Nhàn
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 6 2020 lúc 17:19

BĐT của bạn bị ngược dấu, mà có vẻ các mẫu số cũng ko đúng (để ý mẫu số thứ 2 và thứ 3 đều có chung xy+xz ko hợp lý)

Phan Thị Hà Vy
Xem chi tiết
Thanh Tùng DZ
26 tháng 4 2020 lúc 8:42

Ta có : \(\frac{x}{x^2-yz+2010}+\frac{y}{y^2-xz+2010}+\frac{z}{z^2-xy+2010}\)

\(=\frac{x^2}{x^3-xyz+2010x}+\frac{y^2}{y^3-xyz+2010y}+\frac{z^2}{z^3-xyz+2010z}\)

\(\ge\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)}=\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+3\left(xy+yz+xz\right)\left(x+y+z\right)}\)

\(=\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3+3xy^2+3x^2y+3x^2z+3xz^2+3y^2z+3yz^2}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}=\frac{1}{x+y+z}\)

Khách vãng lai đã xóa
lý canh hy
Xem chi tiết
hoa học trò
7 tháng 1 2019 lúc 20:21

giờ nhân cả tử và mẫu mỗi phân thức vs mỗi tử của nó rồi sử dụng BDT bunhiacopxki là ra thôi bn

Đen đủi mất cái nik
8 tháng 1 2019 lúc 7:51

\(\frac{x^2}{x^3-xyz+2013x}+\frac{y^2}{y^3-xyz+2013y}+\frac{z^2}{z^3-xyz+2013z}\)

\(\ge\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+3.\left(xy+yz+zx\right)\left(x+y+z\right)}\)

\(=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx+3xy+3yz+3zx\right)}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left(x+y+z\right)^2}=\frac{1}{x+y+z}\)

Kiệt Nguyễn
16 tháng 2 2020 lúc 7:56

\(VT=\text{Σ}_{cyc}\frac{x}{x^2-yz+2013}=\text{Σ}_{cyc}\frac{x^2}{x^3-xyz+2013x}\)

\(\ge\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2013\left(x+y+z\right)}\)(bđt Cauchy - Schwarz dạng Engel)

\(=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)+2013\left(x+y+z\right)}\)

\(=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx+2013\right)}\)

\(=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left[\left(x+y+z\right)^2-3\left(xy+yz+zx\right)+2013\right]}\)

\(=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left[\left(x+y+z\right)^2-3.671+2013\right]}\)

\(=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}=\frac{1}{x+y+z}\)

(Dấu "=" xảy ra khi x = y = z = \(\frac{\sqrt{2013}}{3}\))

Khách vãng lai đã xóa
Ánh Dương
Xem chi tiết
Phạm Lan Hương
25 tháng 11 2019 lúc 20:07
https://i.imgur.com/OrspMQU.jpg
Khách vãng lai đã xóa
Nguyễn Việt Lâm
25 tháng 11 2019 lúc 20:27

\(\frac{xy}{z}+\frac{yz}{x}\ge2y\) ; \(\frac{xy}{z}+\frac{zx}{y}\ge2x\); \(\frac{yz}{x}+\frac{zx}{y}\ge2z\)

Cộng vế với vế:

\(2\left(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\right)\ge2\left(x+y+z\right)\)

Dấu "=" xảy ra khi \(x=y=z\)

Khách vãng lai đã xóa
Lê Gia Bảo
25 tháng 11 2019 lúc 20:26

a. \(\)Áp dụng bất đẳng thức Côsi cho 2 số dương \(\frac{xy}{z}\)\(\frac{yz}{x}\), ta có: \(\frac{xy}{z}+\frac{yz}{x}\ge2\sqrt{\frac{xy}{z}.\frac{yz}{x}}=2\sqrt{y^2}=2y\) (1)

Hoàn toàn tương tự: \(\)

\(\frac{yz}{x}+\frac{zx}{y}\ge2z\)\(\frac{xy}{z}+\frac{zx}{y}\ge2x\) (2)

Từ (1) và (2) suy ra đpcm

Khách vãng lai đã xóa
Hạ Vy
Xem chi tiết
Buddy
16 tháng 2 2020 lúc 10:57

https://hoc24.vn/hoi-dap/question/910328.html

Khách vãng lai đã xóa
Trần Đức Thắng
Xem chi tiết