Cho hình vuông ABCD cạnh 1cm. M là trung điểm BC. Trên các CD lấy điểm N sao cho góc MAN = 45 độ. Tính độ dài DN.
Cho hình chóp S.ABCD có ABCD là hình vuông cạnh a, cạnh bên SA vuông với đáy. Trên cạnh BC lấy điểm M di động và cạnh CD lấy N di động sao cho góc MAN=45 độ. Gọi BM=x, DN=y và (0<x;y<a)
Chứng minh a(x+y)=a2-xy
Cho hình vuông ABCD. M là trung điểm BC. Trên các CD lấy điểm N sao cho góc MAN =45 độ . Chứng minh CD = 3ND .
Giúp mình đi. Mai là hạn rồi. Giải chi tiết nhá
cho hình vuông ABCD có cạnh bằng 6cm. Điểm N nằm trên cạnh CD sao choDN =2 cm, P là điểm nằm trên tia đối của BC sao cho BP=DN
a. cm tg ABP=ADN và tg ANCP nội tiếp đt
b, tính độ dài đt ngoại tiếp tứ giác ANCP
c, trên cạnh BC lấy điểm M sao cho góc MAN = 45 độ. cm MP=MN và tính diện tích tam giác AMN
giúp mình câu c, diện tích vs ạaaa ạ
1 Hình vuông ABCD có cạnh AB=a. Gọi M là trung điểm của cạnh BC. Trên cạnh CD ta lấy điểm N sao cho khoảng cách từ đó đến đường thẳng AM bằng độ dài đoạn thẳng DN. Tính độ dài các đoạn thẳng AM, CN, MN
2 Cho tam giác vuông ABC vuông tại B có AB=3a, BC=4a. Ta dựng tam giác ACD vuông cân tại D sao cho D khác phía với B đối vớ đường thẳng AC. Tính độ dài AD,BD
Cho hình vuông ABCD cạnh bằng 1. Trên cạnh AB lấy điểm M sao cho BM = 1, trên cạnh CD lấy điểm N sao cho DN = 1 và P là trung điểm BC. Tính cosMNP?
Cho hình vuông ABCD có cạnh bằng a tâm O, hai điểm di động M,N lần lượt trên hai cạnh BC, CD sao cho góc MAN= 45 độ. Gọi H, K lần lượt là hình chiếu của B, D trên AM, AN
a). Chứng minh tg ABHO, ADKO nội tiếp khi BM= DN= \(\dfrac{a}{3}\)
b) Chứng minh \(\dfrac{AH}{AN}=\dfrac{AK}{AM}\)
Chi tiết \(BM=DN=\dfrac{a}{3}\) hoàn toàn không cần thiết
a.
Ta có: \(AC\perp BD\) tại O (2 đường chéo hình vuông) \(\Rightarrow O\) thuộc đường tròn đường kính AB
\(AH\perp BH\) (gt) \(\Rightarrow\) H thuộc đường tròn đường kính AB
\(\Rightarrow\) 4 điểm A,B,O,H cùng thuộc đường tròn đường kính AB hay tứ giác ABHO nội tiếp
Hoàn toàn tương tự, 4 điểm ADKO cùng thuộc đường tròn đường kính AD nên tứ giác ADKO nội tiếp
b.
Trong tam giác vuông ABM vuông tại B với đường cao BH, áp dụng hệ thức lượng:
\(AB^2=AH.AM\)
Tương tự, trong tam giác vuông ADN:
\(AD^2=AK.AN\)
Mà \(AB=AD=a\Rightarrow AH.AM=AK.AN\Rightarrow\dfrac{AH}{AN}=\dfrac{AK}{AM}\) (đpcm)
Cho hình vuông ABCD. Gọi M,N là hai điểm lần lượt trên hai cạnh BC và CD sao cho góc MAN= 45 độ. Chứng minh chu vi tam giác CMN = 1/2 chu vi hình vuông ABCD
Trên tia đối của tia DC lấy E sao cho DE=BM
Xét ΔABM vuông tại B và ΔADE vuông tại D có
AB=AD
BM=DE
=>ΔABM=ΔADE
=>AM=AE
góc BAM+góc MAN+góc NAD=góc BAD=90 độ
=>góc BAM+góc NAD=45 độ
=>góc EAN=45 độ
Xét ΔEAN và ΔMAN có
AE=AM
góc EAN=góc MAN
AN chung
=>ΔEAN=ΔMAN
=>EN=MN
C CMN=CM+MN+CN
=CM+MN+CN
=CM+ED+DN+CN
=CM+BM+DN+CN
=BC+CD=1/2*C ABCD
Cho hình vuông ABCD có cạnh bằng a. Trên BC, CD lần lượt lấy các điểm M,N sao cho góc MAN bằng 45 ° (M khác B, N khác C, M khác C, N khác D). Từ A kẻ AK vuông góc với MN (K thuộc MN). C/m: KM=MB và DN=NK
Tự vẽ hình nhé
Tạo hình: lấy điểm T thuộc đường thẳng DC( T không nằm trên đọan DC) sao cho góc DAT = góc BAM
lấy điểm H thuộc đường thẳng BC( H không nằm trên đọan BC) sao cho góc BAH = góc DAN.
Bạn tự c/m: \(\hept{\begin{cases}\Delta ATD=\Delta AMB\\\Delta ADN=\Delta ABH\end{cases}\Rightarrow\hept{\begin{cases}AT=AM\\AN=AH\end{cases}}}\) ( 2 cạnh tương ứng )
Tiếp theo c/m \(\hept{\begin{cases}\Delta TAN=\Delta MAN\\\Delta MAN=\Delta MAH\end{cases}\Rightarrow\hept{\begin{cases}\widehat{TNA}=\widehat{MNA}\\\widehat{NMA}=\widehat{HMA}\end{cases}}}\)( 2 góc tương ứng )
Đến đây bạn tự làm nốt nhé
Hình vuông ABCD có cạnh AB=a. Gọi M là trung điểm của các cạnh BC.Trên cạnh CD lấy điểm N sao cho khoảng cách từ đó đến đường thẳng AM bằng độ dài đoạn DN. Tính AM,CN,MN
Vẽ \(NP\perp AM\) tại P
\(\hept{\begin{cases}\text{có }AB=a\Rightarrow AM=\sqrt{AB^2+BN^2}=\frac{\sqrt{5}}{2}a\\\text{từ }CM:AM=AD=a\end{cases}}\Rightarrow MP=\frac{-2+\sqrt{5}}{2}a\)
Đặt ND = NP, ta có:
\(x^2+MP^2=MC^2+CN^2\)
\(x^2+\left(\frac{-2+\sqrt{5}}{2}\right)^2a^2=\frac{a^2}{4}+\left(a-x\right)^2\)
\(\Leftrightarrow x^2+\frac{9-4\sqrt{5}}{4}a^2=\frac{a^2}{4}+a^2-2ax+x^2\)
\(\Leftrightarrow a^2\left(\frac{9-4\sqrt{5}}{4}-\frac{1}{4}-1\right)=-2ax\)
\(\Leftrightarrow\left(1-\sqrt{5}\right)a^2=-2ax\)
\(\Leftrightarrow x=\frac{\sqrt{5}-1}{2}a\Rightarrow CN=\frac{3-\sqrt{5}}{2}a\)
\(\Rightarrow MN=\sqrt{CN^2+MC^2}\)
\(MN=\sqrt{\frac{15-6\sqrt{5}}{4}a^2}\)
\(MN=\sqrt{\frac{15-6\sqrt{5}}{2}}a\)
P/s: Ko chắc