Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mi Ka
Xem chi tiết
Lấp La Lấp Lánh
27 tháng 9 2021 lúc 15:42

\(B=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{110}\)

\(=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{10.11}\)

\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{10}-\dfrac{1}{11}\)

\(=\dfrac{1}{2}-\dfrac{1}{11}< \dfrac{1}{2}\)

Nguyễn Lê Phước Thịnh
27 tháng 9 2021 lúc 23:58

Bài 6: 

\(A=\left(x+\dfrac{1}{2}\right)^2+\left|2y-\dfrac{3}{4}\right|+\dfrac{175}{3}\ge\dfrac{175}{3}\forall x,y\)

Dấu '=' xảy ra khi \(\left(x,y\right)=\left(-\dfrac{1}{2};\dfrac{3}{8}\right)\)

thanh dat nguyen
Xem chi tiết
Nguyễn Hoàng Minh
5 tháng 1 2022 lúc 21:29

Bài 7:

\(a,A=\dfrac{2a+a-3}{a-3}\cdot\dfrac{\left(a-3\right)\left(a+3\right)}{3}=\dfrac{3\left(a-1\right)\left(a+3\right)}{3}=\left(a-1\right)\left(a+3\right)\\ b,B=\dfrac{b+3-6}{b+3}:\dfrac{b^2-9-b^2+10}{\left(b-3\right)\left(b+3\right)}\\ B=\dfrac{b-3}{b+3}\cdot\left(b-3\right)\left(b+3\right)=\left(b-3\right)^2\)

Bài 8:

\(a,M=\dfrac{4m^2-4mn+n^2}{m^2}:\dfrac{n-2m}{mn}=\dfrac{\left(n-2m\right)^2}{m^2}\cdot\dfrac{mn}{n-2m}=\dfrac{n\left(n-2m\right)}{m}\\ b,N=\dfrac{1}{3}+x:\dfrac{x+3-x}{x+3}=\dfrac{1}{3}+x\cdot\dfrac{x+3}{3}=\dfrac{1+x^2+3x}{3}\)

Nguyễn Lê Phước Thịnh
5 tháng 1 2022 lúc 21:26

Bài 8: 

b: \(N=\dfrac{1}{3}+\dfrac{x}{\dfrac{x+3-x}{x+3}}=\dfrac{1}{3}+\dfrac{x}{\dfrac{3}{x+3}}=\dfrac{1}{3}+\dfrac{x+3}{3x}=\dfrac{x+x+3}{3x}=\dfrac{2x+3}{3x}\)

Linh Nguyen
Xem chi tiết
Lê Thị Thục Hiền
23 tháng 8 2021 lúc 6:43

Bài 7:

a)ĐKXĐ:\(\left\{{}\begin{matrix}x\ge m+1\\x\ge\dfrac{m}{4}\end{matrix}\right.\)

TH1: \(m+1< \dfrac{m}{4}\Rightarrow m< -\dfrac{4}{3}\)

\(\Rightarrow x\ge\dfrac{m}{4}\)\(\Rightarrow x\in\)\([\dfrac{m}{4};+\)\(\infty\)\()\)

Để hàm số xác định với mọi x dương \(\Leftrightarrow\)\(\left(0;+\infty\right)\subset\)\([\dfrac{m}{4};+\)\(\infty\)\()\)

\(\Leftrightarrow\dfrac{m}{4}\ge0\Leftrightarrow m\ge0\) kết hợp với \(m< -\dfrac{4}{3}\Rightarrow m\in\varnothing\)

TH2:\(m+1\ge\dfrac{m}{4}\Rightarrow m\ge-\dfrac{4}{3}\)

\(\Rightarrow x\ge m+1\)\(\Rightarrow\)\(x\in\)\([m+1;+\)\(\infty\))

Để hàm số xác định với mọi x dương \(\Leftrightarrow\)\(\left(0;+\infty\right)\subset\)\([m+1;\)\(+\infty\)\()\)

\(\Leftrightarrow m+1\le0\Leftrightarrow m\le-1\) kết hợp với \(m\ge-\dfrac{4}{3}\)

\(\Rightarrow m\in\left[-\dfrac{4}{3};-1\right]\)

Vậy...

b)ĐKXĐ:\(\left\{{}\begin{matrix}x\ge2-m\\x\ne-m\end{matrix}\right.\)\(\Rightarrow x\in\)\([2-m;+\)\(\infty\)) (vì \(-m< 2-m\))

Để hàm số xác ddingj với mọi x dương

\(\Leftrightarrow\left(0;+\infty\right)\subset\)\([2-m;+\)\(\infty\))

\(\Leftrightarrow2-m\le0\Leftrightarrow m\ge2\)

Vậy...

Lê Thị Thục Hiền
23 tháng 8 2021 lúc 7:02

Bài 9:

a)Đặt \(f\left(x\right)=x^2+2x-2\)

TXĐ:\(D=R\)

TH1:\(x\in\left(-\infty;-1\right)\)

Lấy \(x_1;x_2\in\left(-\infty;-1\right)\)\(:x_1\ne x_2\) 

Xét \(I=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{x_1^2+2x_1-2-\left(x_2^2+2x_2-2\right)}{x_1-x_2}=x_1+x_2+2\)

Vì \(x_1;x_2\in\left(-\infty;-1\right)\Rightarrow x_1+x_2< -1+-1=-2\)\(\Leftrightarrow x_1+x_2+2< 0\)

\(\Rightarrow I< 0\)

Suy ra hàm nb trên \(\left(-\infty;-1\right)\)

TH2:\(x\in\left(-1;+\infty\right)\)

Lấy \(x_1;x_2\in\left(-1;+\infty\right)\)\(:x_1\ne x_2\) 

Xét \(I=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{x_1^2+2x_1-2-\left(x_2^2+2x_2-2\right)}{x_1-x_2}=x_1+x_2+2>0\)

Suy ra hàm đb trên \(\left(-1;+\infty\right)\)

Vậy...

b)Đặt \(f\left(x\right)=\dfrac{2}{x-3}\)

TXĐ:\(D=R\backslash\left\{3\right\}\)

TH1:\(x\in\left(-\infty;3\right)\)

Lấy \(x_1;x_2\in\left(-\infty;3\right)\)\(:x_1\ne x_2\) 

Xét \(I=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{\dfrac{2}{x_1-3}-\dfrac{2}{x_2-3}}{x_1-x_2}=\dfrac{-2}{\left(x_1-3\right)\left(x_2-3\right)}\)

Vì \(x_1;x_2\in\left(-\infty;3\right)\Rightarrow x_1-3< 0;x_2-3< 0\Rightarrow\left(x_1-3\right)\left(x_2-3\right)>0\)

\(\Rightarrow I< 0\)

Suy ra hàm nb trên \(\left(-\infty;3\right)\)

TH2:\(x\in\left(3;+\infty\right)\)

Lấy \(x_1;x_2\in\left(3;+\infty\right)\)\(:x_1\ne x_2\) 

Xét \(I=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{\dfrac{2}{x_1-3}-\dfrac{2}{x_2-3}}{x_1-x_2}=\dfrac{-2}{\left(x_1-3\right)\left(x_2-3\right)}\)

Vì \(x_1;x_2\in\left(3;+\infty\right)\Rightarrow x_1-3>0;x_2-3>0\Rightarrow\left(x_1-3\right)\left(x_2-3\right)>0\)

\(\Rightarrow I< 0\)

Suy ra hàm nb trên \(\left(3;+\infty\right)\)

Vậy hàm nb trên \(\left(-\infty;3\right)\) và \(\left(3;+\infty\right)\)

 

Phạm Thu
Xem chi tiết
Nguyễn Dược Tiên
Xem chi tiết

em ơi chưa có bài em nhé, em chưa tải bài lên lám sao mình giúp được 

Nguyễn Dược Tiên
3 tháng 3 2023 lúc 22:37

Dạ đề đây ạ loading...  

Nguyễn Dược Tiên
3 tháng 3 2023 lúc 22:47

Dạ đề đây ạloading...  

nguyễn ngọc lan nhi
Xem chi tiết
Hiro
16 tháng 5 2019 lúc 20:32

Sao không viết câu hỏi ra đây luôn đi chứ có thể nhièu người biết mà không có sách lắm! Sao hướng dẫn được

Câu hỏi đâu bạn?

nguyễn ngọc lan nhi
16 tháng 5 2019 lúc 20:35

Bn giúp Mik nhé hiro

tú khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 10 2021 lúc 22:41

Câu 3: 

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{x+y}{3+2}=\dfrac{90}{5}=18\)

Do đó: x=54; y=36

tú khánh
Xem chi tiết
Lê Hà Dương
19 tháng 2 2022 lúc 11:18

=2001

Khách vãng lai đã xóa
Kimchi Lùn
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 10 2023 lúc 22:36

a: \(x+\dfrac{3}{9}=\dfrac{7}{6}\cdot\dfrac{2}{3}\)

=>\(x+\dfrac{1}{3}=\dfrac{14}{18}=\dfrac{7}{9}\)

=>\(x=\dfrac{7}{9}-\dfrac{1}{3}=\dfrac{7}{9}-\dfrac{3}{9}=\dfrac{4}{9}\)

b: \(x-\dfrac{2}{3}=\dfrac{1}{8}:\dfrac{5}{4}\)

=>\(x-\dfrac{2}{3}=\dfrac{1}{8}\cdot\dfrac{4}{5}=\dfrac{1}{10}\)

=>\(x=\dfrac{1}{10}+\dfrac{2}{3}=\dfrac{3+20}{30}=\dfrac{23}{30}\)

Duy minh55
4 tháng 5 lúc 20:16

TThế giới oi oi oi 

tú khánh
Xem chi tiết
Nhan Thanh
6 tháng 9 2021 lúc 22:11

c. \(\left|\dfrac{8}{4}-\left|x-\dfrac{1}{4}\right|\right|-\dfrac{1}{2}=\dfrac{3}{4}\)

\(\Rightarrow\left[{}\begin{matrix}\left|\dfrac{8}{4}-x+\dfrac{1}{4}\right|-\dfrac{1}{2}=\dfrac{3}{4}\\\left|\dfrac{8}{4}+x-\dfrac{1}{4}\right|-\dfrac{1}{2}=\dfrac{3}{4}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left|\dfrac{9}{4}-x\right|-\dfrac{1}{2}=\dfrac{3}{4}\\\left|\dfrac{7}{4}+x\right|-\dfrac{1}{2}=\dfrac{3}{4}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}\dfrac{9}{4}-x-\dfrac{1}{2}=\dfrac{3}{4}\\x=\dfrac{9}{4}-\dfrac{1}{2}=\dfrac{3}{4}\end{matrix}\right.\\\left[{}\begin{matrix}\dfrac{7}{4}+x-\dfrac{1}{2}=\dfrac{3}{4}\\-\dfrac{7}{4}-x-\dfrac{1}{2}=\dfrac{3}{4}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=1\\x=\dfrac{7}{2}\end{matrix}\right.\\\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-3\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{7}{2}\\x=-3\end{matrix}\right.\) 

Ở nơi x=9/4-1/2 là x-9/4-1/2 nha

 

 

Kirito-Kun
6 tháng 9 2021 lúc 22:03

a. -1,5 + 2x = 2,5

<=> 2x = 2,5 + 1,5

<=> 2x = 4

<=> x = 2

b. \(\dfrac{3}{2}\left(x+5\right)-\dfrac{1}{2}=\dfrac{4}{3}\)

<=> \(\dfrac{3}{2}x+\dfrac{15}{2}-\dfrac{1}{2}=\dfrac{4}{3}\)

<=> \(\dfrac{9x}{6}+\dfrac{45}{6}-\dfrac{3}{6}=\dfrac{8}{6}\)

<=> 9x + 45 - 3 = 8

<=> 9x = 8 + 3 - 45

<=> 9x = -34

<=> x = \(\dfrac{-34}{9}\)