Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tấn Sang Nguyễn
Xem chi tiết
Dung Vu
Xem chi tiết
Jeon Jungkook
Xem chi tiết
Nguyễn Duy Khang
18 tháng 1 2021 lúc 11:47

a) Thay \(m=7\) vào phương trình, ta được:

\(x^2-2x+7=0\)

Xét \(\Delta=\left(-2\right)^2-4.1.7=4-28=-24\)

=> Phương trình vô nghiệm \(\left(\Delta< 0\right)\)

b) Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-2\right)}{1}=2\\x_1.x_2=\dfrac{m}{1}\end{matrix}\right.\)

Xét \(\Delta=\left(-2\right)^2-4.1.m=4-4m\)

Để phương trình có nghiệm thì \(\Delta\ge0\)

\(\Leftrightarrow4-4m\ge0\\ \Leftrightarrow-4m\ge-4\\ \Leftrightarrow m\le1\)

Theo đề bài, ta có: 

\(x^2+y^2=5\\ \Leftrightarrow x^2+y^2+2xy-2xy=5\\ \Leftrightarrow\left(x+y\right)^2-2xy=5\\ \Leftrightarrow2^2-2m=5\\ \Leftrightarrow4-2m=5\\ \Leftrightarrow2m=-1\\ \Leftrightarrow m=-\dfrac{1}{2}\)

 

 
Trần Anh Hoàng
Xem chi tiết
Hồ Lê Thiên Đức
15 tháng 1 2022 lúc 23:51

Ta có x+ x+ 1 = y2

Lại có x+ 2x+ 1 ≥ x+ x+ 1 hay (x2 + 1)2 ≥ x+ x+ 1

=> (x2 + 1)2 ≥ y(1)

Lại có x+ x+ 1 > x4 => y2 > x4 (2)

Từ (1) và (2), ta có x4 < y2 ≤ (x2 + 1)2

<=> y2 = (x2 + 1)2 = x+ 2x+ 1

Mà x+ x+ 1 = y=> x+ 2x+ 1 = x+ x+ 1

<=> x2 = 0 <=> x = 0

Thay vào, ta có 1 = y<=> y ∈ {-1,1}

Vậy ...

 

Dương Thị Thu Hiền
Xem chi tiết
Lâm hà thu
Xem chi tiết
Ben 10
14 tháng 9 2017 lúc 21:09

<=>x^2+y^2-x-y-xy=0 
<=>2x^2+2y^2-2x-2y-2xy=0 
<=>(x-y)^2+(x-1)^2+(y-1)^2=2 
mà 2=0+1+1=1+0+1=1+1+0 
(phần này tách số 2 ra thành tổng 3 số chính phương) 
Xét trường hợp 1: 
(x-y)^2=0 
(x-1)^2=1 
(y-1)^2=1 
Giải ra ta được x=2, y=2 
Tương tự xét các trường hợp còn lại. 
Kết quả: 5 nghiệm: (2;2) ; (1;0) ; (1;2) ; (0;1) ; (2;1) 
Thân^^

Nguyễn Văn Thành
14 tháng 9 2017 lúc 21:10

x2 - xy + y2 = x - y

<=> x2 - xy + y2 - x + y = 0

<=> x ( x - y) + y2 - ( x - y) = 0

<=> (x-1)(x-y)y2 =0

Adu Darkwa
Xem chi tiết
Akai Haruma
6 tháng 3 2021 lúc 23:13

Lời giải:

Hiển nhiên $x\geq 0$

Ta có: $2^x=y^2-57\equiv y^2\equiv 0,1\pmod 3$

$\Leftrightarrow (-1)^x\equiv 0,1\pmod 3$

$\Rightarrow x$ chẵn.

Đặt $x=2a$ với $a$ là số tự nhiên.

Khi đó: $2^{2a}-y^2=-57$

$\Leftrightarrow (2^a-y)(2^a+y)=-57$

Đến đây là dạng phương trình tích cực kỳ đơn giản nên bạn có thể tự xét TH để giải. Kết quả $a=3; y=11$ hay $x=6; y=7$

Akai Haruma
6 tháng 3 2021 lúc 23:13

Lời giải:

Hiển nhiên $x\geq 0$

Ta có: $2^x=y^2-57\equiv y^2\equiv 0,1\pmod 3$

$\Leftrightarrow (-1)^x\equiv 0,1\pmod 3$

$\Rightarrow x$ chẵn.

Đặt $x=2a$ với $a$ là số tự nhiên.

Khi đó: $2^{2a}-y^2=-57$

$\Leftrightarrow (2^a-y)(2^a+y)=-57$

Đến đây là dạng phương trình tích cực kỳ đơn giản nên bạn có thể tự xét TH để giải. Kết quả $a=3; y=11$ hay $x=6; y=7$

Dung Vu
Xem chi tiết
Pé Lùn
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 9 2017 lúc 5:32

+ 2x2 + y2 – 8x + 2y – 1 = 0 không phải phương trình đường tròn vì hệ số của x2 khác hệ số của y2.

+ Phương trình x2 + y2 + 2x – 4y – 4 = 0 có :

a = –1; b = 2; c = –4 ⇒ a2 + b2 – c = 9 > 0

⇒ phương trình trên là phương trình đường tròn.

+ Phương trình x2 + y2 – 2x – 6y + 20 = 0 có :

a = 1; b = 3; c = 20 ⇒ a2 + b2 – c = –10 < 0

⇒ phương trình trên không là phương trình đường tròn.

+ Phương trình x2 + y2 + 6x + 2y + 10 = 0 có :

a = –3; b = –1; c = 10 ⇒ a2 + b2 – c = 0 = 0

⇒ phương trình trên không là phương trình đường tròn.