chứng minh rằng biểu thức 3x2-3z2+6yx+3y chia hết cho x+y+z
chứng minh rằng biểu thức 3x2-3z2+6yx+3y chia hết cho x+y+z
Sửa đề: 3x^2-3z^2+6xy+3y^2
=3(x^2+2xy+y^2-z^2)
=3(x+y+z)(x+y-z) chia hết cho x+y+z
cho x;y thuộc Z , chứng minh rằng : nếu A= 5x + y chia hết cho 19 thì B= 4x - 3y chia hết cho 19
ta có 4x - 3y = 19x - 3.(5x + y)
Vì 19x chia hết cho 19;
5x + y chia hết cho 19 nên 3(5x + y) chia hết cho 19
do đó 19x - 3(5x + y) chia hết cho 19 hay 4x - 3y chia hết cho 19
vì 5x+y : 19 nên
5x:19 =>x:19=>4x:19(1)
y:19 =>3y:19 (2)
từ 1 và 2 ta có
4x-3y:19
(dấu : là chia hết)
cho các biểu thức : A=11x+29y và B=2x-3y. Chứng minh rằng nếu x,y là số nguyên và A chia hết cho 13 thì B chia hết cho 13. Ngược lại nếu B chia hết cho 13 thì A chia hết cho 13
A chia hết cho 13
A+B=11x+29y+2x-3y=13x-26y chia hết cho 13
=>B chia hết cho 13
B chia hết cho 13
A+B chia hết cho 13
=>A chia hết cho 13
Cho ba số nguyên x,y,z thỏa mãn điều kiện x+y+z chia hết cho 6. Chứng minh rằng biểu thức
\(M=\left(x+y\right)\left(y+z\right)\left(z+x\right)-2xyz\) chia hết cho 6
Có: \(x+y+z⋮6\)
\(\Rightarrow x+y+z=6k\left(k\in Z\right)\)
\(\Rightarrow\hept{\begin{cases}x+y=6k-z\\y+z=6k-x\\z+x=6k-y\end{cases}}\)
\(M=\left(x+y\right)\left(y+z\right)\left(z+x\right)-2xyz\)
\(\Leftrightarrow M=x^2y+y^2z+z^2y+xy^2+xz^2+x^2z-2xyz-2xyz\)
\(\Leftrightarrow M=xy\left(x+y\right)+yz\left(y+z\right)+xz\left(z+x\right)\)
\(\Leftrightarrow M=xy\left(6k-z\right)+yz\left(6k-x\right)+xz\left(6k-y\right)\)
\(\Leftrightarrow M=6k\left(xy+yz+zx\right)-3xyz\)
Ta có:\(x+y+z=6k\left(k\in Z\right)\)
\(\Rightarrow\)x+y+z là số chẵn.
\(\Rightarrow\)trong 3 số x;y;z có ít nhất 1 số chẵn
\(\Rightarrow xyz⋮2\)
\(\Rightarrow3xyz⋮6\)
\(M=6k\left(xy+yz+zx\right)-3xyz⋮6\)( vì \(6k\left(xy+yz+zx\right)⋮6\))
đpcm
chứng minh rằng x và y là các số nguyên sao cho biểu thức 2x + 3y chia hết cho 17thi biểu thức 9x + 5y cũng chia hết cho 17
tìm số a có 4 chữ số .biết a chia hết cho 131 còn dư là 112 những khi chia a cho131 ta nhận được số dư là18
1. Chứng minh rằng giá trị biểu thức sau không phụ thuộc vào các biến:
a) ( x+2 )^2 - 2(x+2)(x-8) + ( x-8)^2
b) (x+y-z-t)^2 - ( z + t - x - y )^2
2. chứng minh rằng với mọi số nguyên n, ta có n^3 - n luôn chia hết cho 6
3. Tìm cặp số nguyên ( x; y) sao cho: x + 3y = xy + 3
1.a) (x+2)2-2(x+2)(x-8)+(x-8)2=[ (x+2)-(x-8) ]2=(x+2-x+8)2=102=100
b) (x+y-z-t)2-(z+t-x-y)2=(x+y-z-t+z+t-x-y)(x+y-z-t-z-t+x+y)
=0.-2(z+t-x-y)=0
2. n3-n=n(n2-1)=n(n-1)(n+1)
Ta n(n-1)(n+1) là tích ba số nguyên tự nhiên
=>n(n-1)(n+1) chia hết cho 2 và 3
=>n(n-1)(n+1) chia hết cho 6
Bài 3 : Tính giá trị của biểu thức .
M*N với x=-2 . Biết rằng : M=-2x^2+3x+5 ; N=x^2-x+3 .
Bài 4 : Tính giá trị của đa thức , biết x=y+5 .
a ) x*(x+2)+y*(y-2)-2xy+65
b ) x^2+y*(y+2x)+75
Bài 5 : Cho biểu thức : M= (x-a)*(x-b)+(x-b)*(x-c)+(x-c)*(x-a)+x^2 . Tính M theo a , b , c biết rằng x=1/2a+1/2b+1/2c .
Bài 6 : Cho các biểu thức : A=15x-23y ; B=2x+3y . Chứng minh rằng nếu x, y là các số nguyên và A chia hết cho 13 thì B chia hết cho 13 . . Ngược lại nếu B chia hết 13 thì A cũng chia hết cho 13 .
Bài 7 : Cho các biểu thức : A=5x+2y ; B=9x+7y
a . rút gọn biểu thức 7A-2B .
b . Chứng minh rằng : Nếu các số nguyên x , y thỏa mãn 5x+2y chia hết cho 17 thì 9x+7y cũng chia hết cho 17 .
Bài 4 :
Thay x=y+5 , ta có :
a ) ( y+5)*(y5+2)+y*(y-2)-2y*(y+5)+65
=(y+5)*(y+7)+y^2-2y-2y^2-10y+65
=y^2+7y+5y+35-y^2-2y-2y^2-10y+65
= 100
Bài 5 :
A = 15x-23y
B = 2x-3y
Ta có : A-B
= ( 15x -23y)-(2x-3y)
=15x-23y-2x-3y
=13x-26y
=13x*(x-2y) chia hết cho 13
=> Nếu A chia hết cho 13 thì B chia hết cho 13 và ngược lại
Cho 2 biểu thức:
A=(x-2)^3+2x(x-3)(x+3)+6x(x+1)+(x^3+8)
B=(2y+1)^3-6y(3y+1)-4y(y^2+3y+1)+2y(9y+2)-1
a)Rút gọn A-B
b)Cho x-y=3;x^2+y^2=25. Tính A-B
c)Với x,y thuộc Z. Chứng minh (A-B) chia hết cho 3<=>(x-y) chia hết cho 3
Cho các biểu thức:
A= 15x - 23y; B= 2x+3y
Chứng minh rằng nếu x, y là các số nguyên và A chia hết cho 13 thì B chia hết cho 13 và ngược lại
Ta có :
\(A-B=\left(15x-23y\right)-\left(2x+3y\right)\)
\(\Leftrightarrow A-B=15x-23y-2x-3y\)
\(\Leftrightarrow A-B=\left(15x-2x\right)-\left(23y+3y\right)\)
\(\Leftrightarrow A-B=13x-26y\)
\(\Leftrightarrow13\left(x-2y\right)⋮13\)
Mà \(A⋮13\Rightarrow B⋮13\left(đpcm\right)\)
Mà \(B⋮13\Rightarrow A⋮13\left(đpcm\right)\)