\(3x^2-3z^2+6yx+3y^2=3\left[x^2-z^2+2xy+y^2\right]=3\left[\left(x+y\right)^2-z^2\right]=3\left(x+y-z\right)\left(x+y+z\right)⋮\left(x+y+z\right)\)
bạn ơi ở trên 3y mà
bạn giải cách khác giúp mình được không???
\(3x^2-3z^2+6yx+3y^2=3\left[x^2-z^2+2xy+y^2\right]=3\left[\left(x+y\right)^2-z^2\right]=3\left(x+y-z\right)\left(x+y+z\right)⋮\left(x+y+z\right)\)
bạn ơi ở trên 3y mà
bạn giải cách khác giúp mình được không???
cho x;y thuộc Z , chứng minh rằng : nếu A= 5x + y chia hết cho 19 thì B= 4x - 3y chia hết cho 19
Cho ba số nguyên x,y,z thỏa mãn điều kiện x+y+z chia hết cho 6. Chứng minh rằng biểu thức
\(M=\left(x+y\right)\left(y+z\right)\left(z+x\right)-2xyz\) chia hết cho 6
Cho 2 biểu thức:
A=(x-2)^3+2x(x-3)(x+3)+6x(x+1)+(x^3+8)
B=(2y+1)^3-6y(3y+1)-4y(y^2+3y+1)+2y(9y+2)-1
a)Rút gọn A-B
b)Cho x-y=3;x^2+y^2=25. Tính A-B
c)Với x,y thuộc Z. Chứng minh (A-B) chia hết cho 3<=>(x-y) chia hết cho 3
Cho biểu thức:
A = 15x - 23y và B = 2x + 3y
Chứng minh rằng nếu x,y là các số nguyên và A chia hết cho 13 thì B chia hết cho 13. Ngược lại B chia hết cho 13 thì A cũng chia hết cho 13
Cho x , y thuộc z Chứng minh rằng
a, Nếu M = 5x + y chia hết 19 thì N = 4x - 3y chia hết 19
Giải chi tiết giùm mình nha
Cho x , y thuộc z . Chứng tỏ rằng
a, Nếu M = 5x + y chia hết 19 thì N = 4x - 3y chia hết 19
b, Nếu P = 4x + 3y chia hết 13 thì Q = 7x + 2y chia hết 13
cho biểu thức A=n^5-6n với n thuộc Z chứng minh rằng A chia hết cho 5
cho x, y, z thuộc Z. Chứng min rằng:
a, Nếu 3x^2+2y chia hết cho 11 thì 15x^2-12y chia hết cho 11
b, Nếu 2x+3y^2 chia hết cho 7 thì 6x+16y^2 chia hết cho 7
- Tìm a để đa thức (x^3+ax-12x+4) chia hết cho (x+2)
- Chứng minh rằng với mọi n thuộc Z thì (n^4+2n^3-n^2-2n) chia hết cho 24
- tìm giá trị nhỏ nhất của biểu thức: P=x^2-2xy+2y^2-8y+2010