x2=yz ;z2=xy
cm:x/y=y/z=z/x
chứng minh nếu x2−yzx(1−yz)=y2−zxy(1−xz)x2−yzx(1−yz)=y2−zxy(1−xz).Với x≠y,xyz≠0,yz≠1,xz≠1x≠y,xyz≠0,yz≠1,xz≠1 thì xy+xz+yz=xyz(x+y+z)
chứng minh nếu x2−yzx/(1−yz)=y2−zxy/(1−xz)x2−yzx(1−yz)=y2−zxy(1−xz).Với x≠y,xyz≠0,yz≠1,xz≠1x≠y,xyz≠0,yz≠1,xz≠1 thì xy+xz+yz=xyz(x+y+z)
chứng minh nếu x2−yzx(1−yz)=y2−zxy(1−xz)x2−yzx(1−yz)=y2−zxy(1−xz).Với x≠y,xyz≠0,yz≠1,xz≠1x≠y,xyz≠0,yz≠1,xz≠1 thì xy+xz+yz=xyz(x+y+z)
chứng minh nếu x2−yzx(1−yz)=y2−zxy(1−xz)x2−yzx(1−yz)=y2−zxy(1−xz).Với x≠y,xyz≠0,yz≠1,xz≠1x≠y,xyz≠0,yz≠1,xz≠1 thì xy+xz+yz=xyz(x+y+z) giải được mình sẽ tích đúng cho tất cả các câu trả lời của bạn
Bạn viết đề rõ ràng hơn nhé, mình không đọc được :(
Phân tích đa thức thành nhân tử:
a) m x 2 + my - n x 2 - ny; b) mz - 2z - m 2 + 2m;
c) x 2 y 2 + y 3 + z x 2 + yz; d) 2x2 + 4mx + x + 2m.
e) x 4 - 9 x 3 + x 2 - 9x; g) 3 x 2 -2 ( x - y ) 2 - 3 y 2 .
h*) xy(x + y) + yz (y + z) + xz(x + z) + 2xyz.
x2+y2+z2≥xy+yz+xz
** Lần sau bạn lưu ý ghi đề bài đầy đủ.
Cho $x,y,z$ là các số thực. CMR $x^2+y^2+z^2\geq xy+yz+xz$
----------------------------
Ta có:
BĐT cần cm tương đương với:
$x^2+y^2+z^2-xy-yz-xz\geq 0$
$\Leftrightarrow 2x^2+2y^2+2z^2-2xy-2yz-2xz\geq 0$
$\Leftrightarrow (x^2-2xy+y^2)+(y^2-2yz+z^2)+(z^2-2xz+x^2)\geq 0$
$\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2\geq 0$
(luôn đúng với mọi số thực $x,y,z$)
Do đó ta có đpcm
Dấu "=" xảy ra khi $x=y=z$
x2-yz+y2-zx+z2-xy
\(x^2-xy+y^2-yz+z^2-xz\)
\(=\left(x+y+z\right)^2-2xy-2xz-2yz-xy-yz-xz\)
\(=\left(x+y+z\right)^2-3xy-3yz-3zx\)
Cho x2+y2+z2=2 tìm GTLN P=x2/x2+yz+x+1 + y+z/x+y+z+1 + 1/xyz+3
Phân tích các đa thức thành nhân tử
a) 3x2 yz + 6xyz
b) 5 ( x + 2 ) - x2 - 2x
c) x2 + 2xy + y2 - 22
\(a,=3xyz\left(x+2\right)\\ b,=5\left(x+2\right)-x\left(x+2\right)=\left(x+2\right)\left(5-x\right)\\ c,=\left(x+y\right)^2-z^2=\left(x+y-z\right)\left(x+y+z\right)\)
a) 3x2yz + 6xyz = 3xyz(x+2)
b) 5(x+2) - x2 - 2x = 5(x+2) - x(x+2) = (5+x)(x+2)
c) x2 + 2xy + y2 - 22 = (x2+2xy+y2) - 22 = (x+y)2 - 22 = (x+y+2)(x+y-2)
3x^2yz + 6xyz=3xyz(x+2)
5(x+2)-x^2-2x=5(x+2)-(x^2+2x)=5(x+2)-x(x+2)=(x+2)(5-x)
x^2+2xy+y^2-2^2=(x+y)^2 -2^2=(x+y+2)(x+y-2)
chứng minh rằng nếu x2−yzx(1−yz) =y2−xzy(1−yz) với x≠y,xyz≠0,yz≠1,xz≠1thì xy+yz+xz=xyz(x+y+z)