\(x^2-xy+y^2-yz+z^2-xz\)
\(=\left(x+y+z\right)^2-2xy-2xz-2yz-xy-yz-xz\)
\(=\left(x+y+z\right)^2-3xy-3yz-3zx\)
\(x^2-xy+y^2-yz+z^2-xz\)
\(=\left(x+y+z\right)^2-2xy-2xz-2yz-xy-yz-xz\)
\(=\left(x+y+z\right)^2-3xy-3yz-3zx\)
phân tích a)(x-y)3+(y-z)3+(z-x)3
b)x.(y2-z2)+y.(z2-x2)+z.(x2-y2)
c)xy.(x-y)-xz.(x+z)-yz.(zx-y+z)
d)x.(y+z)2+y.(z-x)2+z.(x+y)2-4xyz
Cho x + y + z = 3
a, Tìm GTNN của A = x2 + y2 + z2
b, Tìm GTNN của B = xy + yz + zx
c, Tìm GTNN của C = A + B
⇔x2+y2+z2−xy−yz−xz≥0
Cho x2 + y2 + z2 = 10. Tính:
P = ( xy + yz + xz)2 + ( x - yz)2 + ( y - xz)2 + ( z - xy)2
Cho a=x2 - yz; b= y2 - zx: c= z2 - xy.
a) Tính tổng ax+by+ cz và tổng a+b+c
b) CMR ax+by+ cz=(x +y + z)(a+b+c)
Cho a=x2 - yz; b= y2 - zx: c= z2 - xy.
a) Tính tổng ax+by+ cz và tổng a+b+c
b) CMR ax+by+ cz=(x +y + z)(a+b+c
cho x+y+z=4 xy+xz+xt+yz+yt+zt=1 tìm GTNN của x2+y2+z2+t2
bài 1 phân tích các đa thức thành nhân tử
a) x2 - z2 + y2 - 2xy b) a3 - ay - a2x + xy
c) x2 - 2xy + y2 - xz + yz d) x2 - 2xy + tx - 2ty
bài 2 giải các phương trình sau
( x - 2 )2 - ( x - 3 ) ( x+ 3 ) = 6
bài 3 chứng minh rằng
a) x2 + 2x + 2 > 0 với xϵZ
b) -x2 + 4x - 5 < 0 với x ϵ Z
Cho các số x,y,z thỏa mãn:x2+y2+z2=xy+yz+zx và x2014+y2014+z2014=3. Tính giá trị cua biểu thức P=x25+y4+z2015