Cho tam giác ABC có góc A = 90 độ và AB=AC . Gọi K là trung điểm của BC .
a)Cm : tám giác AKB = tám giác AKC và AK vuông góc với BC
b) Từ C kẻ đường vuong góc vs BC cắt AB tại M , Gọi N là trung điểm của CM
Cm : CM//AK , KN =1/2 BM
Cho tam giác ABC có góc A =90 độ và AB=AC. Gọi K là trung điểm của BC
a) C/m: tam giác AKB= tam giác AKC và AK vuông góc BC
b) Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. C/m: EC song song AK
vẽ hình hộ nha
a) Xét ΔAKB và ΔAKC có:
AB=AC(gt)
AK:cạnh chung
BK=CK(gt)
=> ΔAKB=ΔAKC(c.c.c)
=> \(\widehat{AKB}=\widehat{AKC}\)
Mà: \(\widehat{AKB}+\widehat{AKC}=180^o\)
=> \(\widehat{AKB}=\widehat{AKC}=90^o\)
=> \(AK\perp BC\)
b) Vì: \(EC\perp BC\left(gt\right)\)
Mad: \(AK\perp BC\left(cmt\right)\)
=> EC//AK
Cho tam giác ABC có góc A =90 độ và AB=AC. Gọi K là trung điểm của BC
a) C/m: tam giác AKB= tam giác AKC và AK vuông góc BC
b) Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. C/m: EC song song AK
c)Tam giác BCE là tam giác gì? Tính góc BEC
a) Xét \(\Delta AKB\) và \(\Delta AKC\) , có :
AK là cạnh chung
AB = AC ( gt )
BK = KC ( K là trung điểm của BC )
=> \(\Delta AKB=\Delta AKC\left(cgc\right)\)
Ta có :
+ Góc AKB = AKC ( \(\Delta AKB=\Delta AKC\) )
Mà góc AKB + AKC = 1800 ( 2 góc kề bù )
=> AKB = AKC= \(\frac{180^0}{2}\)= 900
Vậy AK \(\perp BC\)
b)
Ta có :
AK \(\perp BC\) ( Theo câu a )
EC \(\perp BC\) ( gt )
=> EC // AK
c) Tam giác BCE là tam giác vuông
GÓC BEC = 500
Cho tam giác ABC có Â=90 độ và AB=AC. Gọi K là trung điểm của BC
a) C/m tam giác AKB= tam giác AKC
b)C/m AK vuông góc với BC
c) Từ C vẽ đường vuông góc với BC, cắt đường thẳng AB tại E.C/m EC//AK
d)C/m CB=CE
Ai giúp tui với. Tui cần gấp!!!!!!!!!!
a) Xét \(\Delta AKB\) và \(\Delta\)AKC có:
AK chung
AB = AC (gt)
KB = KC (K là trung điểm BC)
\(\Rightarrow\)\(\Delta\)AKB = \(\Delta\)AKC (c-c-c)
b) Do \(\Delta AKB\) = \(\Delta AKC\) (cmt)
\(\Rightarrow\) \(\widehat{AKB}=\widehat{AKC}\) (hai góc tương ứng)
Mà \(\widehat{AKB}\) và \(\widehat{AKC}\) là hai góc kề bù
\(\Rightarrow\) \(\widehat{AKB}=\widehat{AKC}\) \(=\dfrac{180^0}{2}=90^0\)
\(\Rightarrow\) AK \(\perp\) BC
c) Ta có:
EC \(\perp\) BC (gt)
Mà AK \(\perp\) BC (cmt)
\(\Rightarrow\) EC // AK (từ vuông góc đến song song)
Cho tam giác ABC (A=90 độ); AB=BC. Gọi K là trung điểm của BC
a) CM: tam giác AKB = tam giác AKC và AK vuông BC
b) Từ C vẽ đt vuông góc vs BC cắt AB tại E. CM: EC song song vs AK
Cho tam giác ABC có góc A=90 độ và AB=AC . Gọi K là trung điểm của BC. .
a) Chứng minh : tam giác AKB = tam giác AKC .
b) Chứng minh : AK vuông góc với BC .
c) Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh Ec song song với AK
a,xet tam giac AKB va tam giac AKC co:
BK=CK(gt)
AK canh chung
AB=AC(gt)
=>tam giac AKB=tam giac AKC(c.c.c)
b,xet tam giacABC co:
AB=AC=>tam giac ABC can tai A
=>AK vua la duong trung truc, vua la duong cao
=>AK vuong goc voi BC
c,ta co: AK vuong goc voi BC, CE vuong goc voi BC
=>CK song song voi CE
của bạn sao y chan đè cương của mình luôn
nguyễn diễm cơ giúp mình câu này vơi
c) tam giác BCE là tam giác gì
tính góc BCE
Cho tam giác ABC có góc A=90 độ và AB=AC . Gọi K là trung điểm của BC. .
a) Chứng minh : tam giác AKB = tam giác AKC .
b) Chứng minh : AK vuông góc với BC .
c) Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh Ec song song với AK
Cho tam giác ABC vuông tại A có AB AC = . Gọi K là trung điểm của BC. 1) Chứng minh = AKB AKC . 2) Qua C vẽ đường thẳng vuông góc với BC cắt AB tại E . Tính số đo góc AEC.
Cho tam giác ABC có góc A=90 độ và AB=AC . Gọi K là trung điểm của BC. .
a) Chứng minh : tam giác AKB = tam giác AKC và AK vuông góc với BC
b) Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh Ec song song với AK
c) tính góc BEC
a, Xét tam giác AKB và tam giác AKC có:
AK chung
AB = AC (gt)
KB = KC ( K là trung điểm BC )
=> Tam giác AKB = tam giác AKC (c.c.c)
AB = AC (gt) => Tam giác ABC cân tại A có AK là đường trung tuyến ( K là trung điểm BC )
=> AK đồng thời là đường cao => AK vuông góc với BC.
b, Ta có:
AK vuông góc với BC (cmt)
EC vuông góc với BC (gt)
=> AK song song với EC
c, Tam giác ABC cân tại A có AK vừa là đường trung tuyến vừa là đường cao => AK cũng là đường phân giác tam giác ABC
=> Góc BAK = góc CAK = 1/2 góc BAC = 1/2*90 độ(tam giác ABC vuông tại A) = 30 độ
Lại có: AK song song với EC (cmt) => Góc KAC = góc ECA ( so le trong)
Mà góc KAC = 30 độ => Góc ECA = 30 độ
Góc BAC + góc CAE = 180 độ ( kề bù)
=> Góc CAE = 180 độ - góc BAC = 180 độ - 90 độ = 90 độ
Xét tam giác ACE có : Góc AEC + góc ECA + góc CAE = 180 độ ( định lí tổng 3 góc trong tam giác)
Góc AEC + 30 độ + 90 độ = 180 độ
=> Góc AEC = 180 độ - 90 độ - 30 độ = 60 độ
Hay góc BEC = 60 độ
Vậy Góc BEC = 60 độ
Cho tam giác ABC có góc A = 90 độ và AB = AC. Gọi K là trung điểm của BC
a) Chứng minh tam giác AKB = tam giác AKC và AK vuông góc BC
b) Từ C kẻ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AK
a: Xét ΔAKB và ΔAKC có
AK chung
KB=KC
AB=AC
Do đó: ΔAKB=ΔAKC
Ta có: ΔABC cân tại A
mà AK là đường trung tuyến
nên AK là đường cao
b: AK⊥BC
EC⊥BC
Do đó: AK//EC
a: Xét ΔAKB và ΔAKC có
AK chung
KB=KC
AB=AC
Do đó: ΔAKB=ΔAKC
Ta có: ΔABC cân tại A
mà AK là đường trung tuyến
nên AK là đường cao
b: AK⊥BC
EC⊥BC
Do đó: AK//EC
cho tam giác ABC có A= 90 độ , AB = AC . gọi K là trung điểm BC
a) c/m : ram giác AKB = AKC
b) c/m : AK vuông góc BC
c) từ C vẽ đường vuông góc vs BC cắt AB tại E . c/m: EC//AK và tính số đo góc AEC
a/ Xét tam giác AKB và tam giác AKC có :
AB = AC
KB = KC (
cho tam giác ABC vuông tại A có AB=AC gọi K là trung điểm của cạnh BC
a,Chứng minh Tam giác AKB=Tam giác AKC và AK vuông góc BC
b,Từ C kẻ đường vuông góc với BC cắt AB tại E.Chứng minh AK//CE và CE=CB
c, So sánh AK và CE
a: Xét ΔAKB và ΔAKC có
AK chung
KB=KC
AB=AC
=>ΔAKB=ΔAKC
=>góc AKB=góc AKC=180/2=90 độ
=>AK vuông góc BC
b: AK vuông góc BC
CE vuông góc CB
=>AK//CE
Xét ΔCEB vuông tại C có góc B=45 độ
nên ΔCEB vuông cân tại C
=>CE=CB
c: AK=1/2CE(do AK là đường trung bình của ΔCEB)