( Mu4-42. Cho hàm so $f(x)$ có đạo hàm trên đoạn $[0 ; 1]$ thỏa mãn $f(1)=0$ và $\int_0^1\left[f^{\prime}(x)\right]^2 d x=\int_0^1(x+1) e^x f(x) d x=\frac{e^2-1}{4}$. Tinh tich phân $I=\int_{0}^1 f(x) d x$.
A. $I=2-e$.
B. $I=\frac{e}{2}$.
C. $l=e-2$.
D. $1=\frac{e-1}{2}$
d) (12x -1) (2x -3);e) (x -7)(x -5);f) (x -12)(x + 12)(4x -1)d) (12x -1) (2x -3);e) (x -7)(x -5);f) (x -12)(x + 12)(4x -1)
\(d,=24x^2-38x+3\\ e,=x^2-12x+35\\ f,=\left(x^2-144\right)\left(4x-1\right)=4x^3-x^2-576x+144\)
d: \(\left(12x-1\right)\left(2x-3\right)\)
\(=24x^2-36x-2x+3\)
\(=24x^2-38x+3\)
Cho hai tập hợp E={x∈R, f(x)=0}, F={x∈R, g(x)=0}. Tập hợp H={x∈R, f(x).g(x)=0}. Mệnh đề nào đúng và giải thích:
A. H= E hợp F
B. H= E giao F
C. H= E/F
D. H=F/E
nếu 0<a<B<c<d<e<f và (a-b)(c-d)(e-f)x=(b-a)(d-c)(f-e) thì x = ..............
(a-b)(c-d)(e-f)x=(b-a)(d-c)(f-e)
=>(a-b)(c-d)(e-f)x = -(a-b)(c-d)(e-f)
=>x=(a-b)(c-d)(e-f)/-(a-b)(c-d)(e-f)=(-1)
nếu 0<a < b < c <d<e<f và (a-b)(c-d)(e-f)x=(b-a)(d-c)(e-f) thì x=?
Nếu 0<a<b<c<d<e<f và (a-b)(c-d)(e-f) x=(b-a)(d-c)(f-e) thì x=?
Vì (a-b) đối (b-a)
(c-d) đối (d-c)
(e-f) đối (f-e)
=> (a-b)(c-d)(e-f) đối (b-a)(d-c)(f-e)
=> (a-b)(c-d)(e-f).(-1)=(b-a)(d-c)(f-e)
Chúc bạn học giỏi nha!!!
Nếu 0<a<b<c<d<e<f và (a-b)(c-d)(e-f)x=(b-a)(d-c)(f-e)thi x=
nếu 0<a < b < c <d<e<f và (a-b)(c-d)(e-f)x=(b-a)(d-c)(e-f) thì x=?
giúp em mấy bài nguyên hàm với ạ. huhu
1) cho f(x)=8sin bình(x+pi/12) một nguyên hàm F(x) của f(x) thỏa F(0)=8 là
A.4x+2sin(2x+pi/6)+9
B.4x-2sin(2x+pi/6)-9
C.4x+2sin(2x+pi/6)+7
D.4x-2sin(2x+pi/6)+7
2)cho f(x)=x*(e mũ -x) một nguyên hàm F(x) của f(x) thỏa F(0)=1 là
A.-(x+1) *(e mũ -x)+1
B.-(x+1)*(e mũ -x)+2
C.(x+1)*(e mũ -x)+1
D.(x+1)*(e mũ -x)+2
Lời giải:
Bài 1:
Ta nhớ công thức \(\sin^2x=\frac{1-\cos 2x}{2}\). Áp dụng vào bài toán:
\(F(x)=8\int \sin^2\left(x+\frac{\pi}{12}\right)dx=4\int \left [1-\cos \left(2x+\frac{\pi}{6}\right)\right]dx\)
\(\Leftrightarrow F(x)=4\int dx-4\int \cos \left(2x+\frac{\pi}{6}\right)dx=4x-2\int \cos (2x+\frac{\pi}{6})d(2x+\frac{\pi}{6})\)
\(\Leftrightarrow F(x)=4x-2\sin (2x+\frac{\pi}{6})+c\)
Giải thích 1 chút: \(d(2x+\frac{\pi}{6})=(2x+\frac{\pi}{6})'dx=2dx\)
Vì \(F(0)=8\Rightarrow -1+c=8\Rightarrow c=9\)
\(\Rightarrow F(x)=4x-2\sin (2x+\frac{\pi}{6})+9\)
Câu 2:
Áp dụng nguyên hàm từng phần như bài bạn đã đăng:
\(\Rightarrow F(x)=-xe^{-x}-e^{-x}+c\)
Vì \(F(0)=1\Rightarrow -1+c=1\Rightarrow c=2\)
\(\Rightarrow F(x)=-e^{-x}(x+1)+2\), tức B là đáp án đúng
Nếu 0 < a < b < c < d < e < f
và ( a - b ) (c -d ) ( e - f )x = ( b - a ) ( d - c ) ( f - e ) thì x =
Vì a<b=>a-b<0(1)
c<d=>c-d<0(2)
e<f=>e-f<0(3)
từ (1);(2);(3)=>(a-b)(c-d)(e-f)<0 (3)
Vì b>a=>b-a>0(4)
d>c=>d-c>0(5)
f>e=>f-e>0(6)
từ (4);(5);(6)=>(b-a)(d-c)(f-e)>0(7)
từ (3);(7) ta có: (a-b)(c-d)(e-f) là số âm
(b-a)(d-c)(f-e) là số dương
đặt (a-b)(c-d)(e-f)=-S
(b-a)(d-c)(f-e)=S
ta có:(-S).x=S=>x=-1
Vậy x=-1