Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Chí
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết
Nguyễn Đức Trí
18 tháng 8 2023 lúc 14:17

\(5x^4+10x^2+2y^6+4y^3-6=0\)

\(\Leftrightarrow5x^4+10x^2+5+2y^6+4y^3+2-7-6=0\)

\(\Leftrightarrow5\left(x^4+2x^2+1\right)+2\left(y^6+2y^3+1\right)=13\)

\(\Leftrightarrow5\left(x^2+1\right)^2+2\left(y^3+1\right)^2=13\)

mà \(\left\{{}\begin{matrix}\left(x^2+1\right)^2\ge0,\forall x\inℤ\\\left(y^3+1\right)^2\ge0,\forall y\inℤ\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+1=1\\y^3+1=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=0\\y^3=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\) thỏa mãn yêu cầu của đề bài.

Lê Hiếu Ngân
Xem chi tiết
Nguyen
17 tháng 2 2019 lúc 14:44

\(\Leftrightarrow x^4+y^4+1+2x^2y^2+2y^2+2x^2-5x^2-4y^2-5=0\)

\(\Leftrightarrow x^4+y^4+2x^2y^2-3x^2-2y^2-4=0\)

\(\Leftrightarrow2x^4+2y^4+4x^2y^2-6x^2-4y^2-8=0\)

\(\Leftrightarrow2x^2\left(x^2+y^2\right)+2y^2\left(x^2+y^2\right)-4\left(x^2+y^2\right)-2\left(x^2+4\right)=0\)

\(\Leftrightarrow\left(x^2+y^2\right)\left(x^2+y^2-2\right)-x^2=4\)

\(\Leftrightarrow\left(x^2+y^2-1\right)^2-1-x^2=4\)

\(\Leftrightarrow\left(x^2+y^2-1\right)^2-x^2=4-1=2^2-1^2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-1=2\\x=\pm1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\pm1\\y=\pm\sqrt{2}\end{matrix}\right.\)(KTM)

Vậy pt vô nghiệm.

Sakura
Xem chi tiết
dinh huong
Xem chi tiết
Trương Quang Bảo
Xem chi tiết
Trần Quốc Đạt
23 tháng 12 2016 lúc 20:34

Mình gợi ý phần đầu nè. Xét \(x=0\) riêng được \(y=0\) hoặc \(y=1\).

Xét \(x\ne0\). Khi đó  \(x\) và \(x^2+x+1\) nguyên tố cùng nhau với mọi \(x\) nguyên khác 0.

(Ở đây ta chỉ định nghĩa 2 số nguyên tố cùng nhau là 2 số có ước chung lớn nhất là 1 nên số âm vẫn được).

Để CM điều này ta gọi \(d=gcd\left(x^2+x+1,x\right)\) thì \(1⋮d\).

Vế trái là một số chia hết cho 4 nên trong 2 số \(x\) và \(x^2+x+1\) phải có một số chia hết cho 4

(Nếu mỗi số đều chia hết cho 2 thì không thể nguyên tố cùng nhau)

Trường hợp 1: \(x⋮4\) còn \(x^2+x+1\) lẻ.

Do \(y\) và \(y-1\) có 1 số chẵn và 1 số lẻ nên số chẵn sẽ là ước của \(x\) còn số lẻ là ước của \(x^2+x+1\).

Tức là có 2 trường hợp: \(x=4y\) và \(x=4\left(y-1\right)\).

Trường hợp 2 ngược lại.

Tới đây bạn tự giải được nha.

kagamine rin len
23 tháng 12 2016 lúc 12:38

\(x\left[1+x+x^2\right]=4y\left[y-1\right]\)

\(\Leftrightarrow x^3+x^2-4y^2+x+4y=0\)

\(\Leftrightarrow x^2\left[x+1\right]+x-4y^2+4y=0\)

\(\Leftrightarrow\Delta=b^2-4ac=1-16xy+16xy^2-16y+16y^2\)

\(\Rightarrow\orbr{\begin{cases}x1=\frac{-1+\sqrt{1-16xy+16xy^2-16y+16y^2}}{2x+2}\\x2=\frac{-1-\sqrt{1-16xy+16xy^2-16y+16y^2}}{2x+2}\end{cases}}\)

đến đây tự làm tiếp nhé

Phạm Thị Thu Ngân
6 tháng 3 2018 lúc 20:20

Có:

                                                      (1)

, nên từ  và  chẵn.

Giả sử   lẻ và  

 là số chính phương,  nên  cũng là hai số chính phương.

Do  

Khi , có .

Vậy có hai cặp số nguyên thỏa mãn yêu cầu bài toán là:

Phạm Thị Thu Trang
Xem chi tiết
Phạm Thị Thu Trang
20 tháng 8 2016 lúc 21:00

Ta có :

\(\left(x^2+4y^2+28\right)^2=17\left(x^4+y^4+14y^2+49\right)\)

\(\Leftrightarrow\left[x^2+4\left(y^2+7\right)\right]^2=17\left[x^4+\left(y^2+7\right)^2\right]\)

\(\Leftrightarrow16x^4-8x^2\left(y^2+7\right)+\left(y^2+7\right)^2=0\)

\(\Leftrightarrow\left[4x^2-\left(y^2+7\right)\right]^2=0\Leftrightarrow4x^2-y^2-7=0\)

\(\Leftrightarrow\left(2x+y\right)\left(2x-y\right)=7\)

Vì x , y nguyên dương nên \(2x+y>0\)\(2x+y>2x-y\)

Do đó \(2x+y=7\)\(2x-y=1\). Vậy \(x=2,y=3\)

Đoàn Phong
Xem chi tiết
Võ Đông Anh Tuấn
21 tháng 8 2016 lúc 8:46

Ta có :

\(\left(x^2+4y^2+28\right)^2=17\left(x^4+y^4+14y^2+49\right)\)

\(\Leftrightarrow\left[x^2+4\left(y^2+7\right)\right]^2=17\left[x^4+\left(y^2+7\right)^2\right]\)

\(\Leftrightarrow16x^4-8x^2\left(y^2+7\right)+\left(y^2+7\right)^2=0\)

\(\Leftrightarrow\left[4x^2-\left(y^2+7\right)\right]^2=0\)

\(\Leftrightarrow4x^2-y^2-7=0\)

\(\Leftrightarrow\left(2x+y\right)\left(2x-y\right)=7\)

Vì x , y nguyên dương nên \(2x+y>0\) và \(2x+y>2x-y\)

Do đó : \(\left[\begin{array}{nghiempt}2x+y=7\\2x-y=1\end{array}\right.\) \(\Rightarrow x=2;y=3\)

Trương Thị Mỹ Duyên
21 tháng 8 2016 lúc 9:22

\(16y^4+\left(8x^2+244\right)y^2+x^4+56x^2+784+17x^4+833\)

\(-17y^4+16y^4-238y^2+\left(8x^2+224\right)y^2-4=0\)

\(-\left[y^4+\left(8x^2+14\right)y^2+16x^4-56x^2+4\right]\)

 

 

 

Trương Thị Mỹ Duyên
21 tháng 8 2016 lúc 9:34

\(\Leftrightarrow\text{[}x^2+4\left(y^2+7\right)\text{]}^2=17\text{[}x^4+\left(y^2+7\right)^2\text{]}\)

\(\Leftrightarrow\) [x4+8(y2+7)+16(y2+7)2=17[x4+17(y2+7)2]
\(\Leftrightarrow\)16x4-8(y2+7)+(y2+7)2=0

\(\Leftrightarrow\)4x2-(y2+7)=0
\(\Leftrightarrow\) (2x-y)(2x+y)=7                (1)
Do x. y là các số tự nhiên nên 2x+y>2x-y>0 nên từ (1) \(\Rightarrow\)\(\begin{cases}2x-y=1\\2x+y=7\end{cases}\Leftrightarrow\begin{cases}x=2\\y=3\end{cases}}\)

 

Mai Tiến Đỗ
Xem chi tiết