Ta có :
\(\left(x^2+4y^2+28\right)^2=17\left(x^4+y^4+14y^2+49\right)\)
\(\Leftrightarrow\left[x^2+4\left(y^2+7\right)\right]^2=17\left[x^4+\left(y^2+7\right)^2\right]\)
\(\Leftrightarrow16x^4-8x^2\left(y^2+7\right)+\left(y^2+7\right)^2=0\)
\(\Leftrightarrow\left[4x^2-\left(y^2+7\right)\right]^2=0\)
\(\Leftrightarrow4x^2-y^2-7=0\)
\(\Leftrightarrow\left(2x+y\right)\left(2x-y\right)=7\)
Vì x , y nguyên dương nên \(2x+y>0\) và \(2x+y>2x-y\)
Do đó : \(\left[\begin{array}{nghiempt}2x+y=7\\2x-y=1\end{array}\right.\) \(\Rightarrow x=2;y=3\)
\(16y^4+\left(8x^2+244\right)y^2+x^4+56x^2+784+17x^4+833\)
\(-17y^4+16y^4-238y^2+\left(8x^2+224\right)y^2-4=0\)
\(-\left[y^4+\left(8x^2+14\right)y^2+16x^4-56x^2+4\right]\)
\(\Leftrightarrow\text{[}x^2+4\left(y^2+7\right)\text{]}^2=17\text{[}x^4+\left(y^2+7\right)^2\text{]}\)
\(\Leftrightarrow\) [x4+8(y2+7)+16(y2+7)2=17[x4+17(y2+7)2]
\(\Leftrightarrow\)16x4-8(y2+7)+(y2+7)2=0
\(\Leftrightarrow\)4x2-(y2+7)=0
\(\Leftrightarrow\) (2x-y)(2x+y)=7 (1)
Do x. y là các số tự nhiên nên 2x+y>2x-y>0 nên từ (1) \(\Rightarrow\)\(\begin{cases}2x-y=1\\2x+y=7\end{cases}\Leftrightarrow\begin{cases}x=2\\y=3\end{cases}}\)