Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tú Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 2 2020 lúc 19:43

\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2\ge4a\left(b+c+d+e\right)\)

\(\Leftrightarrow a^2-4ab+4b^2+a^2-4ac+4c^2+a^2-4ad+4d^2+a^2-4ae+4e^2\ge0\)

\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(b=c=d=e=\frac{a}{2}\)

Khách vãng lai đã xóa
Annie Scarlet
Xem chi tiết
Lê Anh Duy
17 tháng 3 2019 lúc 13:42

\(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)

\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2-4ab-4ac-4ad-4ae\ge0\)

\(\Leftrightarrow\left(a^2-4ab+4b^2\right)+\left(a^2-4ac+4c^2\right)+\left(a^2-4ad+4d^2\right)+\left(a^2-4ae-4e^2\right)\ge0\)

\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2\ge0\)

BĐT trên đúng, mà các phép biến đổi là tương đương

\(\RightarrowĐPCM\)

Dấu "=" xảy ra khi a = 2b = 2c = 2d = 2e

Nguyễn Thành Trương
17 tháng 3 2019 lúc 13:54

Bất đẳng thức đã cho tương đương với:
\[{a^2} + {b^2} + {c^2} + {d^2} + {e^2} - a\left( {b + c + d + e} \right) \ge 0\]
\[ \Leftrightarrow {a^2} - a\left( {b + c + d + e} \right) + {b^2} + {c^2} + {d^2} + {e^2} \ge 0\]
Xét tam thức bậc hai: $f\left( a \right) = {a^2} - a\left( {b + c + d + e} \right) + {b^2} + {c^2} + {d^2} + {e^2}$

Ta có: $\Delta = {\left( {b + c + d + e} \right)^2} - 4\left( {{b^2} + {c^2} + {d^2} + {e^2}} \right)$

Theo bất đẳng thức BCS, ta có: \[{\left( {b + c + d + e} \right)^2} \le \left( {1 + 1 + 1 + 1} \right)\left( {{b^2} + {c^2} + {d^2} + {e^2}} \right) = 4\left( {{b^2} + {c^2} + {d^2} + {e^2}} \right)\]
Suy ra: \[\Delta = {\left( {b + c + d + e} \right)^2} - 4\left( {{b^2} + {c^2} + {d^2} + {e^2}} \right) \le 0 \Rightarrow f\left( a \right) \ge 0,\,\,\forall a \in \mathbb{R} \]
Từ đó ta có đpcm.

nguyen the vuong
6 tháng 4 2019 lúc 18:03

a2+b2+c2+d2+e2≥a(b+c+d+e)a2+b2+c2+d2+e2≥a(b+c+d+e)

⇔4a2+4b2+4c2+4d2+4e2−4ab−4ac−4ad−4ae≥0⇔4a2+4b2+4c2+4d2+4e2−4ab−4ac−4ad−4ae≥0

⇔(a2−4ab+4b2)+(a2−4ac+4c2)+(a2−4ad+4d2)+(a2−4ae−4e2)≥0⇔(a2−4ab+4b2)+(a2−4ac+4c2)+(a2−4ad+4d2)+(a2−4ae−4e2)≥0

⇔(a−2b)2+(a−2c)2+(a−2d)2+(a−2e)2≥0⇔(a−2b)2+(a−2c)2+(a−2d)2+(a−2e)2≥0

BĐT trên đúng, mà các phép biến đổi là tương đương

⇒ĐPCM

olomyobbb y
Xem chi tiết
Nguyễn Công Minh Hoàng
Xem chi tiết
Lê Tài Bảo Châu
3 tháng 11 2019 lúc 14:40

\(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)

\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2\ge4ab+4ac+4ad+4ae\)

\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2-4ab-4ac-4ad-4ae\ge0\)

\(\Leftrightarrow\left(a^2-4ab+4b^2\right)+\left(a^2-4ac+4c^2\right)+\left(a^2-4ad+4d^2\right)+\left(a^2-4ae+4e^2\right)\ge0\)

\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2\ge0\)( luôn đúng )

Vậy ...

Khách vãng lai đã xóa
tth_new
10 tháng 11 2019 lúc 20:28

Có nhiều cách biểu diễn:

VD

\(VT-VP=\frac{\left(a-b-c\right)^2+\left(a-d-e\right)^2+\left(b-c\right)^2+\left(d-e\right)^2}{2}\) (còn rất nhiều ...)

Khách vãng lai đã xóa
Nguyễn Minh Châu
Xem chi tiết
FL.Han_
25 tháng 9 2020 lúc 19:44

Đề thiếu rồi nhé: \(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)

Quá ez:))

Ta có: \(a^2+b^2+c^2+d^2+e^2\)

\(=\left(\frac{a^2}{4}+b^2\right)+\left(\frac{a^2}{4}+c^2\right)+\left(\frac{a^2}{4}+d^2\right)+\left(\frac{a^2}{4}+e^2\right)\)

\(\ge2\sqrt{\frac{a^2}{4}\cdot b^2}+2\sqrt{\frac{a^2}{4}\cdot c^2}+2\sqrt{\frac{a^2}{4}\cdot d^2}+2\sqrt{\frac{a^2}{4}\cdot e^2}\)

\(=ab+ac+ad+ae=a\left(b+c+d+e\right)\)

Dấu "=" xảy ra khi: \(\frac{a}{2}=b=c=d=e\)

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
25 tháng 9 2020 lúc 19:49

Sửa đề a2 + b2 + c2 + d2 + e2 ≥ a( b + c + d + e )

a2 + b2 + c2 + d2 + e2 ≥ a( b + c + d + e )

<=> a2 + b2 + c2 + d2 + e2 ≥ ab + ac + ad + ae

Nhân 4 vào từng vế

<=> 4( a2 + b2 + c2 + d2 + e2 ) ≥ 4( ab + ac + ad + ae )

<=> 4a2 + 4b2 + 4c2 + 4d2 + 4e2 ≥ 4ab + 4ac + 4ad + 4ae

<=> 4a2 + 4b2 + 4c2 + 4d2 + 4e2 - 4ab - 4ac - 4ad - 4ae ≥ 0

<=> ( a2 - 4ab + 4b2 ) + ( a2 - 4ac + 4c2 ) + ( a2 - 4ac + 4d2 ) + ( a2 - 4ae + 4e2 ) ≥ 0

<=> ( a - 2b )2 + ( a - 2c )2 + ( a - 2d )2 + ( a - 2e )2 ≥ 0 ( đúng )

Vậy bđt được chứng minh

Dấu "=" xảy ra <=> \(b=c=d=e=\frac{a}{2}\)

Khách vãng lai đã xóa
Linh Châu
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 6 2020 lúc 15:24

a/ \(VT=a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)\)

\(VT=a^2+b^2+c^2+a^2b^2+b^2c^2+c^2a^2\)

\(VT\ge6\sqrt[6]{a^6b^6c^6}=6\left|abc\right|\ge6abc\)

Dấu "=" xảy ra khi \(a=b=c=1\)

b/ \(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2\ge4ab+4ac+4ad+4ae\)

\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(\frac{a}{2}=b=c=d=e\)

c/ \(\Leftrightarrow\frac{a^3+b^3}{2}\ge\frac{a^3+b^3+3a^2b+3ab^2}{8}\)

\(\Leftrightarrow a^3-a^2b+b^3-ab^2\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(a=b\)

Nguyễn Việt Lâm
30 tháng 6 2020 lúc 15:30

d/ \(\Leftrightarrow a^4-a^3b+b^4-ab^3\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (luôn đúng)

e/ \(\Leftrightarrow a^6+b^6+a^5b+ab^5\ge a^6+b^5+a^4b^2+a^2b^4\)

\(\Leftrightarrow a^5b-a^4b^2+ab^5-a^2b^4\ge0\)

\(\Leftrightarrow a^4b\left(a-b\right)-ab^4\left(a-b\right)\ge0\)

\(\Leftrightarrow ab\left(a-b\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow ab\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (luôn đúng)

f/ \(\frac{a^6}{b^2}+a^2b^2\ge2\sqrt{\frac{a^8b^2}{b^2}}=2a^4\) ; \(\frac{b^6}{a^2}+a^2b^2\ge2b^4\)

\(\Rightarrow\frac{a^6}{b^2}+\frac{b^6}{a^2}\ge2a^4+2b^4-2a^2b^2\)

\(\Leftrightarrow\frac{a^6}{b^2}+\frac{b^6}{a^2}\ge a^4+b^4+\left(a^4+b^4-2a^2b^2\right)\)

\(\Leftrightarrow\frac{a^6}{b^2}+\frac{b^6}{a^2}\ge a^4+b^4+\left(a^2-b^2\right)^2\ge a^4+b^4\)

Aeris
Xem chi tiết
Phạm Thế Mạnh
10 tháng 9 2018 lúc 21:45

\(1.\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)
\(\Rightarrow a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(2.\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\frac{a^2}{4}\ge0\)
\(\Leftrightarrow a^2+b^2+c^2+d^2\ge a\left(b+c+d\right)\)
Dấu "=" xảy ra khi \(a=b=c=0\)
\(3.\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\left(\frac{a}{2}-e\right)^2\ge0\)

\(\Leftrightarrow a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
Dấu "=" xảy ra khi \(\frac{a}{2}=b=c=d=e\)
4. Ta có: \(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2\ge2ab\)

\(\left(c-d\right)^2\ge0\Rightarrow c^2+d^2\ge2cd\)
\(\Rightarrow a^2+b^2+c^2+d^2\ge2ab+2cd\)

\(\Rightarrow a^2+b^2+c^2+d^2+ab+cd\ge3ab+3cd\)
Ta lại có:\(\left(\sqrt{ab}-\sqrt{cd}\right)^2\ge0\Rightarrow ab+cd\ge2\sqrt{abcd}=2\)

\(\Rightarrow3\left(ab+cd\right)\ge6\)
\(\Rightarrow a^2+b^2+c^2+d^2+ab+cd\ge3\left(ab+cd\right)\ge6\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}a=b\\c=d\\ab=cd\end{cases}}\Leftrightarrow a=b=c=d\)

Trang Hoang
Xem chi tiết
Lương Ngọc Anh
14 tháng 5 2016 lúc 22:07

chứng minh theo cách BĐT tương đương nha bạn

Nguyễn Tuấn
15 tháng 5 2016 lúc 9:45

câu hỏi tương tự

Đặng Quang Minh
Xem chi tiết
Nguyễn Thành Trương
31 tháng 1 2020 lúc 21:39

Bất đẳng thức đã cho tương đương với:
\[{a^2} + {b^2} + {c^2} + {d^2} + {e^2} - a\left( {b + c + d + e} \right) \ge 0\]
\[ \Leftrightarrow {a^2} - a\left( {b + c + d + e} \right) + {b^2} + {c^2} + {d^2} + {e^2} \ge 0\]
Xét tam thức bậc hai: $f\left( a \right) = {a^2} - a\left( {b + c + d + e} \right) + {b^2} + {c^2} + {d^2} + {e^2}$
Ta có: $\Delta = {\left( {b + c + d + e} \right)^2} - 4\left( {{b^2} + {c^2} + {d^2} + {e^2}} \right)$
Theo bất đẳng thức BCS, ta có: \[{\left( {b + c + d + e} \right)^2} \le \left( {1 + 1 + 1 + 1} \right)\left( {{b^2} + {c^2} + {d^2} + {e^2}} \right) = 4\left( {{b^2} + {c^2} + {d^2} + {e^2}} \right)\]
Suy ra: \[\Delta = {\left( {b + c + d + e} \right)^2} - 4\left( {{b^2} + {c^2} + {d^2} + {e^2}} \right) \le 0 \Rightarrow f\left( a \right) \ge 0,\,\,\forall a \in \mathbb{R} \]
Từ đó ta có đpcm.

Khách vãng lai đã xóa
Bùi Thị Huyền
31 tháng 1 2020 lúc 21:10
https://i.imgur.com/8dtxBfV.jpg
Khách vãng lai đã xóa
Nguyễn Thành Trương
31 tháng 1 2020 lúc 21:43

Cách khác:

\( {a^2} + {b^2} + {c^2} + {d^2} + {e^2} \ge a\left( {b + c + d + e} \right)\\ \Leftrightarrow 4{a^2} + 4{b^2} + 4{c^2} + 4{d^2} + 4{e^2} - 4ab - 4ac - 4ad - 4ae \ge 0\\ \Leftrightarrow \left( {{a^2} - 4ab + 4{b^2}} \right) + \left( {{a^2} - 4ac + 4{c^2}} \right) + \left( {{a^2} - 4ad + 4{d^2}} \right) + \left( {{a^2} - 4ae + 4{e^2}} \right) \ge 0\\ \Leftrightarrow {\left( {a - 2b} \right)^2} + {\left( {a - 2c} \right)^2} + {\left( {a - 2d} \right)^2} + {\left( {a - 2e} \right)^2} \ge 0 \)

Bất đẳng thức trên đúng, mà các phép biến đổi là tương đương \(\rightarrow \text{ĐPCM}\)

Dấu "=" xảy ra khi \(a=2b=2c=2d=2e\)

Khách vãng lai đã xóa
tran thu ha
Xem chi tiết
Minh Triều
17 tháng 4 2016 lúc 21:32

\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2\ge4ab+4ac+4ad+4ae\)

<=>(a2-4ab+4b2)+(a2-4ac+4c2)+(a2-4ad+4d2)+(a2-4ae+e2)\(\ge\)0

<=>(a-2b)2+(a-2c)2+(a-2d)2+(a-2e)2\(\ge\)0 (luôn đúng)

=>dpcm

Minh Triều
17 tháng 4 2016 lúc 21:21

nhân 2 vế cho 4 chuyển qua lại rồi dùng HĐT bạn ạ

Le Thi Khanh Huyen
17 tháng 4 2016 lúc 21:26

Nếu nhân 2 vế cho 4 ra thế nào?